Patents Assigned to OmniVision Technologies
-
Patent number: 11233968Abstract: A CMOS image sensor comprises an array of pixels. A column of the pixel array is coupled to a readout column. The readout column is couple to a readout circuitry (RC) that reads out image data from the pixel array. The RC comprises a sampling switch which is coupled to a 1-column successive approximation register (SAR) analog-to-digital converter (ADC). The 1-column SAR ADC comprises a differential comparator, a local SAR control, and a digital-to-analog converter (DAC). The sampling switch is coupled between a readout column and a non-inverting input of the differential comparator. An image readout method reads one pixel with two conversions through the RC. The RC is operated by the local SAR control to set the DAC based on comparator output, and upon which a reset digital value is obtained and stored. An overall reduced algorithm calculation is achieved herein.Type: GrantFiled: October 13, 2020Date of Patent: January 25, 2022Assignee: OmniVision Technologies, Inc.Inventors: Oyvind Janbu, Tore Martinussen
-
Patent number: 11233088Abstract: A method of routing electrical connections in a wafer-on-wafer structure comprises, bonding a metal bonding pad of a first wafer to a metal bonding pad of a second wafer; bonding first wafer to the second wafer with a material different from the metal bonding pads; forming metal interconnect structures connecting the metal bonding pad of the first wafer to a first device disposed within a first and second side of the first wafer; and forming metal interconnect structures connecting the metal bonding pad of the second wafer to a second and third devices disposed within the second wafer, to connect the first device to the second and third devices through the metal bonding pads, wherein the electrical connections of the devices between the first and second wafers do not have a through-via that passes completely through the first or the second wafer.Type: GrantFiled: June 12, 2020Date of Patent: January 25, 2022Assignee: OmniVision Technologies, Inc.Inventors: Gang G. Chen, Shiyu Sun
-
Patent number: 11196949Abstract: A subrange analog-to-digital converter (ADC) converts analog image signal received from a bitline to a digital signal through an ADC comparator. The comparator is shared by a successive approximation register (SAR) ADC coupled to provide M upper output bits (UOB) of the subrange ADC and a ramp ADC coupled to provide N lower output bits (LOB). The digital-to-analog converter (DAC) of the SAR ADC comprises M buffered bit capacitors connected to the comparator. Each buffered bit capacitor comprises a bit capacitor, a bit buffer, and a bit switch controlled by one of the UOB of the SAR ADC. A ramp buffer is coupled between a ramp generator and a ramp capacitor. The ramp capacitor is further coupled to the same comparator. The implementation of ramp buffer and the bit buffers as well as their sharing of the same kind of buffer reduces differential nonlinear (DNL) error of the subrange ADC.Type: GrantFiled: October 2, 2019Date of Patent: December 7, 2021Assignee: OmniVision Technologies, Inc.Inventors: Chao-Fang Tsai, Zheng Yang
-
Patent number: 11196950Abstract: An image sensor has an array of pixels, each pixel having an associated shutter transistor coupled to transfer a charge dependent on light exposure of the pixel onto an image storage capacitor, the image-storage capacitors being configured to be read into an analog to digital converter. The shutter transistors are P-type transistors in N-wells, the wells held at an analog power voltage to reduce sensitivity of pixels to dark current; in an alternative embodiment the shutter transistors are N-type transistors in P-wells, the wells held at an analog ground voltage.Type: GrantFiled: July 9, 2019Date of Patent: December 7, 2021Assignee: OmniVision Technologies, Inc.Inventors: Keiji Mabuchi, Sohei Manabe, Lindsay Grant
-
Patent number: 11195864Abstract: A flip-chip sample imaging device with self-aligning lid includes an image sensor chip, a fan-out substrate, and a lid. The image sensor chip includes (a) a pixel array sensitive to light incident on a first side of the image sensor chip and (b) first electrical contacts disposed on the first side and electrically connected to the pixel array. The fan-out substrate is disposed on the first side, is electrically connected to the first electrical contacts, forms an aperture over the pixel array to partly define a sample chamber over the pixel array, and forms a first surface facing away from the first side. The lid is disposed on the first surface of the fan-out substrate, facing away from the first side, to further define the chamber. The lid includes an inner portion protruding into the aperture to align the lid relative to the fan-out substrate.Type: GrantFiled: March 1, 2019Date of Patent: December 7, 2021Assignee: OmniVision Technologies, Inc.Inventors: Ming Zhang, Yin Qian, Chia-Chun Miao, Dyson H. Tai
-
Patent number: 11187933Abstract: A LCOS display panel comprises a silicon substrate, a pixel structure on the silicon substrate, a first and a second PI (polyimide) layers, a LC (liquid crystal) layer between the first and the second PI layers, wherein the second PI layer is disposed on the pixel structure, and the LC layer is disposed on the second PI layer, a glass substrate, an ITO (indium tin oxide) layer, a dam sealing a perimeter of the LCOS display panel to enclose the LC layer within the dam, wherein the dam is disposed between the first and second PI layers, and holds the silicon substrate and the glass substrate together, and a UV (ultra violet) cut filter in an active area of the LCOS display panel, wherein the active area of the LCOS display panel includes the LC layer and the pixel structure.Type: GrantFiled: August 8, 2018Date of Patent: November 30, 2021Assignee: OmniVision Technologies, Inc.Inventors: Pei-Wen Ko, Chun-Sheng Fan
-
Patent number: 11182319Abstract: A low-power image capture device includes a first image buffer in SRAM coupled to receive images from an image sensor, and a second image buffer receiving images transferred in bursts from the first image buffer, the second image buffer implemented in PASR DRAM, the image buffers together operating as a first-in, first-out, (FIFO) buffer. The device includes an activation detector. The PASR DRAM is powered while receiving bursts of images from the first image buffer, and when the image capture device is in the activated mode; and in ultra-low power PASR mode otherwise. A method includes capturing images into the first image buffer, transferring the images in bursts into a second image buffer in PASR DRAM powered while receiving the images in bursts, the PASR DRAM otherwise in ultra-low power PASR mode; and, upon activating, an image processor receiving images from the second image buffer.Type: GrantFiled: October 13, 2020Date of Patent: November 23, 2021Assignee: OmniVision Technologies, Inc.Inventors: Wei-Feng Huang, Yuguo Ye, Chin Tong Thia, Biao He
-
Patent number: 11184196Abstract: A digital differential line receiver includes a differential signal to single-ended conversion amplifier coupled to receive a data line and data-complement line of a differential signal; a first termination resistor coupled to the data line of the differential signal; a second termination resistor coupled to the data-complement line of the differential signal; a first impedance-adjusting transistor coupled between the first termination resistor and a common mode line; a second impedance-adjusting transistor coupled between the second termination resistor and the common mode line; a control-voltage generator coupled to sense the common mode line and provide a control voltage, the control voltage generator configured to adjust the control voltage to a voltage level such that a combined impedance of the first termination resistor, the first impedance-adjusting transistor, the second termination resistor, and the second impedance-adjusting transistor matches a specified impedance.Type: GrantFiled: December 17, 2020Date of Patent: November 23, 2021Assignee: OmniVision Technologies, Inc.Inventors: Li Yang, Charles Qingle Wu, Nan Liu
-
Patent number: 11172806Abstract: A novel endoscope includes a camera module, an electrical cable, and an electrical connector. The camera module includes an analog image signal output terminal. The cable includes an analog image signal line having a first end connected to the analog image signal output terminal of the camera module. The electrical connector includes a set of electrical contacts configured to engage a complimentary set of electrical contacts of a host system. The set of electrical contacts includes at least an analog image signal contact connected to a second end of the analog image signal line of the cable.Type: GrantFiled: February 20, 2020Date of Patent: November 16, 2021Assignee: OmniVision Technologies, Inc.Inventors: Teng-Sheng Chen, Wei-Feng Lin, Xiang-Dong Xiong
-
Patent number: 11164900Abstract: An image sensor chip-scale package includes a pixel array, a cover glass covering the pixel array, a dam, and an adhesive layer. The pixel array is embedded in a substrate top-surface of a semiconductor substrate. The semiconductor substrate includes a plurality of conductive pads in a peripheral region of the semiconductor substrate surrounding the pixel array. The dam at least partially surrounds the pixel array and is located (i) between the cover glass and the semiconductor substrate, and (ii) on a region of the substrate top-surface between the pixel array and the plurality of conductive pads. The adhesive layer is (i) located between the cover glass and the semiconductor substrate, (ii) at least partially surrounding the dam, and (iii) configured to adhere the cover glass to the semiconductor substrate.Type: GrantFiled: October 8, 2018Date of Patent: November 2, 2021Assignee: OmniVision Technologies, Inc.Inventor: Chun-Sheng Fan
-
Patent number: 11165983Abstract: An image sensor comprises a pixel array of pixel cells. A pixel cell comprises a photodiode, a reset transistor, a transfer transistor, at least one source follower transistor, a sample and hold circuit, an active reset transistor, and a readout transistor. A readout circuitry reads out image data from each columns of pixel cells. A column differential amplifier in the readout circuitry feeds back a column reset drive voltage to each pixel cells arranged in the same column. Signal data of each pixel cells in the same column are read out globally when all the active reset transistors are switched off. Determined by switching configurations of each active reset transistors of pixel cells in the same column, noise data of each pixel cells in the same column are read out either globally or row-by-row. Final image data is achieved by applying the method of correlated double sampling (CDS).Type: GrantFiled: October 8, 2020Date of Patent: November 2, 2021Assignee: OmniVision Technologies, Inc.Inventors: Geunsook Park, Chih-Wei Hsiung
-
Patent number: 11158661Abstract: An image sensor includes a two-dimensional photodiode-array formed in a semiconductor substrate, a first waveguide, and a first color filter. The first waveguide is aligned to a first photodiode of the photodiode-array, located above a top substrate surface of the semiconductor substrate. A first core of the first waveguide has a first core width that is less than a pitch of the photodiode-array in a first direction and a second direction corresponding to respective orthogonal dimensions of the photodiode-array. The first color filter is on a top waveguide surface of the first waveguide and has a first non-uniform thickness above the first core. The first waveguide is between the top substrate surface and the first color filter.Type: GrantFiled: September 19, 2019Date of Patent: October 26, 2021Assignee: OmniVision Technologies, Inc.Inventors: Alireza Bonakdar, Zhiqiang Lin
-
Patent number: 11152404Abstract: A pixel cell includes an electrically conductive tunnel contact formed across a surface of a source follower gate, the tunnel contact having a first end, a second end, and an intermediate portion between the first and second ends. The first end is coupled to a floating diffusion FD, the second end is coupled to the first doped region of a reset transistor RST. The tunnel contact is formed in physical and in electrical contact with the surface of the source follower gate for a length of the intermediate portion substantially equal to a width of the source follower gate. Methods of forming the pixel cell are also described.Type: GrantFiled: December 20, 2019Date of Patent: October 19, 2021Assignee: OmniVision Technologies, Inc.Inventors: Qin Wang, Woon il Choi
-
Patent number: 11131858Abstract: A low-height projector assembly includes a biconvex lens, a converging lens, an aperture stop, and a beam-steerer between the biconvex lens and the converging lens. The biconvex lens has a principal plane, a focal length, and a first optical axis. The converging lens has a second optical axis laterally offset from the first. The beam-steerer is configured to steer light from the biconvex lens to the converging lens. An aperture-stop plane intersects the second optical axis and the aperture stop. On the second optical axis, at least one of a front surface and a back surface of the converging lens is between the aperture-stop plane and the beam-steerer. The axial chief ray's propagation distance from the principal plane to the aperture stop differs from the focal length by less than half the depth of focus of the biconvex lens.Type: GrantFiled: October 9, 2018Date of Patent: September 28, 2021Assignee: OmniVision Technologies, Inc.Inventors: Tingyu Cheng, Jau-Jan Deng
-
Patent number: 11128307Abstract: An analog to digital conversion (ADC) circuit includes a ramp circuit coupled to output a ramp signal, and the ramp signal is offset from a starting voltage by an offset voltage. The ramp signal ramps towards the starting voltage. A counter circuit is coupled to the ramp circuit to start counting after the ramp signal returns to the starting voltage, and a comparator is coupled to the counter circuit and a bitline to compare the ramp signal to a pixel signal voltage on the bitline. In response to the ramp signal equaling the pixel signal voltage, the comparator stops the counter.Type: GrantFiled: October 30, 2018Date of Patent: September 21, 2021Assignee: OmniVision Technologies, Inc.Inventors: Rui Wang, Yu-Shen Yang, Shan Chen, Min Qu
-
Patent number: 11121169Abstract: A method for manufacturing an image sensor includes, for each of a plurality of photosensitive pixels of the image sensor, forming a trench in a semiconductor substrate of the image sensor, and depositing temporary transfer gate material in and above the trench. The method further includes, after the step of depositing temporary transfer gate material, high-temperature annealing at least a portion of the semiconductor substrate. In addition, the method includes, after the step of high-temperature annealing, (a) removing the temporary transfer gate material, thereby reopening the trench, (b) depositing a passivation lining, having a high-k dielectric, in the reopened trench, and (c) depositing metal on the high-k dielectric passivation lining to form a metal vertical transfer gate in the trench and extending above the trench.Type: GrantFiled: June 25, 2019Date of Patent: September 14, 2021Assignee: OmniVision Technologies, Inc.Inventors: Chiao-Ti Huang, Shiyu Sun, Gang Chen
-
Patent number: 11122259Abstract: A test voltage sample and hold circuitry is disclosed in a readout circuitry of an image sensor. This circuitry samples a voltage at demand value based on a ramp voltage shared by the ADC comparators of the readout circuitry. The value of the sampled voltage is controlled by a control circuitry which is able to predict and calculate at what time a ramp generator may carry the demand voltage value. The sampled voltage is held by a hold capacitor during readout of one row and is accessed during the next row by the control circuitry as test data to drive a device under test (DUT) which may be any portion of the image sensor to be tested. Measured data out of the DUT is compared with expected data. Based on the result of the comparison, a signal indicates the pass or fail of the self-test concludes a self-test of the DUT.Type: GrantFiled: February 18, 2020Date of Patent: September 14, 2021Assignee: OmniVision Technologies, Inc.Inventors: Zhiyong Zhan, Tongtong Yu, Xin Wang, Liang Zuo, Kenny Geng
-
Patent number: 11114483Abstract: A cavityless chip-scale image-sensor package includes a substrate, a microlens array, and a low-index layer. The substrate includes a plurality of pixels forming a pixel array. The microlens array includes a plurality of microlenses each (i) having a lens refractive index, (ii) being aligned to a respective one of the plurality of pixels and (iii) having a non-planar microlens surfaces facing away from the respective one of the plurality of pixels. The low-index layer has a first refractive index less than the lens refractive index. The low-index layer also includes a bottom surface, at least part of which is conformal to each non-planar microlens surface. The microlens array is between the pixel array and the low-index layer.Type: GrantFiled: August 10, 2018Date of Patent: September 7, 2021Assignee: OmniVision Technologies, Inc.Inventors: Chien-Chan Yeh, Ying-Chih Kuo, Wei-Feng Lin, Chun-Sheng Fan
-
Publication number: 20210259528Abstract: A novel endoscope includes a camera module, an electrical cable, and an electrical connector. The camera module includes an analog image signal output terminal. The cable includes an analog image signal line having a first end connected to the analog image signal output terminal of the camera module. The electrical connector includes a set of electrical contacts configured to engage a complimentary set of electrical contacts of a host system. The set of electrical contacts includes at least an analog image signal contact connected to a second end of the analog image signal line of the cable.Type: ApplicationFiled: February 20, 2020Publication date: August 26, 2021Applicant: OmniVision Technologies, Inc.Inventors: Teng-Sheng Chen, Wei-Feng Lin, Xiang-Dong Xiong
-
Patent number: 11102422Abstract: A method for capturing a high-dynamic-range image includes: (i) storing a plurality of pixel values representing a first image captured by an image sensor that includes a pixel array, each pixel value having been generated by a respective pixel of a pixel subarray of the pixel array, each pixel being set to one of N1 first exposure values, N1?1; (ii) determining an exposure-count N2 based on the plurality of pixel values; (iii) setting each pixel to one of a second plurality of exposure values, N2 in number, such that, for each of the second plurality of exposure values, at least one pixel is set to that exposure value, one of the second plurality of exposure values differing from each of the N1 first exposure values by more than a threshold value; and after setting (iv), capturing a second image with the image sensor.Type: GrantFiled: June 5, 2019Date of Patent: August 24, 2021Assignee: OmniVision Technologies, Inc.Inventors: Chengming Liu, Tiejun Dai, Richard Mann