Patents Assigned to ON Semiconductor
  • Patent number: 10269573
    Abstract: A device includes a pedestal. The pedestal includes a ground electrode, a central portion, and a peripheral portion. The ground electrode includes a top surface from which the peripheral portion is projected, thereby having a height difference between the central portion and the peripheral portion.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Kun-Mo Lin, Keith Kuang-Kuo Koai, Chih-Tsung Lee, Victor Y. Lu, Yi-Hung Lin
  • Patent number: 10269772
    Abstract: A three-dimensional integrated circuit has a plurality of layers disposed in a stacked relationship. Logic circuitry is embodied in a first layer of the three-dimensional integrated circuit. An input output circuit is electrically coupled to the logic circuitry and has a plurality of transistors embodied in at least two layers of the three-dimensional integrated circuit. The input output circuit has first and second input output circuitry, wherein the first input output circuitry operates faster than the second input output circuitry.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chin-Ming Fu
  • Patent number: 10266400
    Abstract: Micro-electromechanical (MEMS) devices and methods of forming are provided. The MEMS device includes a first substrate including a first conductive feature, a first movable element positioned over the first conductive feature, a second conductive feature, and a second movable element positioned over the second conductive feature. The MEMS device also includes a cap bonded to the first substrate, where the cap and the first substrate define a first sealed cavity and a second sealed cavity. The first conductive feature and the first movable element are disposed in the first sealed cavity and the second conductive feature and the second movable element are disposed in the second sealed cavity. A pressure of the second cavity is higher than a pressure of the first sealed cavity, and an out gas layer is disposed in a recess of the cap that partially defines the second sealed cavity.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Fung Chang, Len-Yi Leu, Lien-Yao Tsai
  • Patent number: 10269738
    Abstract: A redistribution layer with a landing pad is formed over a substrate with one or more mesh holes extending through the landing pad. The mesh holes may be arranged in a circular shape, and a passivation layer may be formed over the landing pad and the mesh holes. An opening is formed through the passivation layer and an underbump metallization is formed in contact with an exposed portion of the landing pad and extends over the mesh holes. By utilizing the mesh holes, sidewall delamination and peeling that might otherwise occur may be reduced or eliminated.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hsien Hsieh, Hsien-Wei Chen, Chen-Hua Yu, Tsung-Shu Lin, Wei-Cheng Wu
  • Patent number: 10269847
    Abstract: A method of forming a microlens may include using two layers of photoresist. The first photoresist layer may be patterned to form a first portion of a pixel microlens. A second photoresist layer may be patterned on top of the first portion of the pixel microlens. The second photoresist may then be melted so that the second photoresist layer has a curved upper surface. The first and second photoresist layers may combine to form the pixel microlens. The indices of refraction of the first and second photoresist layers may the same or different. The melting point of the second photoresist may be lower than the melting point of the first photoresist.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: April 23, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Christopher Parks
  • Patent number: 10269972
    Abstract: A Fin-FET device and its fabrication method are provided. The method for fabricating the Fin-FET device includes forming a plurality of fin structures on a substrate, forming an isolation film on the substrate between neighboring fin structures, removing a portion of the isolation film to form an initial isolation layer with a top surface of the initial isolation layer lower than top surfaces of the fin structures, and implanting doping ions into the initial isolation layer. Further, the method also includes removing a portion of the initial isolation layer to form an isolation layer.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 23, 2019
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Fei Zhou
  • Patent number: 10269663
    Abstract: An apparatus of a wafer processing apparatus includes at least one memory and logic, at least a portion of which is implemented in circuitry of the wafer processing apparatus including at least one processor coupled to the at least one memory. The logic may provide a 3D model of a surface of a wafer, the wafer defining a wafer plane; and modify a surface feature in a Z-direction along the surface of the wafer based on at least one of: an X-critical dimension (CD) extending along an X-direction of the wafer plane, and a Y-CD extending along a Y direction of the wafer plane.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: April 23, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Morgan D. Evans, Tristan Ma, Kevin Anglin, Motoya Okazaki, Johannes M. van Meer
  • Patent number: 10269577
    Abstract: Semiconductor devices and methods for manufacturing the same are disclosed. In an embodiment, a method of manufacturing a semiconductor device may include providing a substrate having a recess; epitaxially forming a first layer including a doped semiconductor material within the recess; and epitaxially forming a second layer including an undoped semiconductor material over at least a portion of the recess.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Tsz-Mei Kwok
  • Patent number: 10269628
    Abstract: A contact structure of a semiconductor device is provided. The contact structure for a semiconductor device comprises a substrate comprising a major surface and a trench below the major surface; a strained material filling the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate, and wherein a surface of the strained material has received a passivation treatment; an inter-layer dielectric (ILD) layer having an opening over the strained material, wherein the opening comprises dielectric sidewalls and a strained material bottom; a dielectric layer coating the sidewalls and bottom of the opening, wherein the dielectric layer has a thickness ranging from 1 nm to 10 nm; a metal barrier coating an opening of the dielectric layer; and a metal layer filling a coated opening of the dielectric layer.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Ding-Kang Shih, Chin-Hsiang Lin, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 10269691
    Abstract: A method of forming a semiconductor device includes forming a first redistribution line on a substrate; forming a plurality of first vertical conductive structures on the first redistribution line and electrically coupled to the first redistribution line; forming a plurality of second vertical conductive structures on the substrate, wherein the first vertical conductive structures and the second vertical conductive structures are interlaced with each other, and the second vertical conductive structures are spaced apart from the first redistribution line; attaching a device die on the substrate; applying a molding compound in a molding layer overlying the substrate to surround the device die; and forming a second redistribution line on the molding layer, wherein the second redistribution line is electrically coupled to the second vertical conductive structures.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wen-Shiang Liao, Chewn-Pu Jou
  • Patent number: 10269634
    Abstract: A method embodiment includes forming a hard mask over a dielectric layer and forming a first metal line and a second metal line extending through the hard mask into the dielectric layer. The method further includes removing the hard mask, wherein removing the hard mask defines an opening between the first metal line and the second metal line. A liner is then formed over the first metal line, the second metal line, and the dielectric layer, wherein the liner covers sidewalls and a bottom surface of the opening.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Hsu Wu, Chien-Hua Huang, Chung-Ju Lee, Tien-I Bao, Shau-Lin Shue
  • Patent number: 10269784
    Abstract: An integrated circuit includes at least one first active region, at least one second active region adjacent to the first active region, and a plurality of third active regions. The first active region and the second active region are staggered. The third active regions are present adjacent to the first active region, wherein the third active regions are substantially aligned with each other.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Te Lin, Ting-Wei Chiang, Hui-Zhong Zhuang, Pin-Dai Sue, Li-Chun Tien
  • Patent number: 10269602
    Abstract: The present disclosure provides a system for wafer warpage inspection including a heatable susceptor configured to heat a wafer according to a predetermined temperature profile. The system for wafer warpage inspection further includes a confocal imager array over the heatable susceptor configured to capture one or more warpage parameters of the wafer. Each confocal imager of the confocal imager array covers a predetermined field of view (FOV). The system for wafer warpage inspection further includes a first actuator permitting the confocal imager array to move in a plurality of directions. The system for wafer warpage inspection further includes a processing unit connected to the confocal imager array. The processing unit is configured to dynamically process the one or more warpage parameters captured during the heating of the wafer according to the predetermined temperature profile. Present disclosure also provides a method for wafer warpage inspection described herein.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wen-Yi Lin, Po-Yao Lin, Shin-Puu Jeng
  • Patent number: 10269981
    Abstract: A device includes a semiconductor substrate, a buried oxide over the substrate, a first transition metal dichalcogenide layer over the buried oxide, an insulator over the first transition metal dichalcogenide layer, and a second transition metal dichalcogenide layer over the insulator. A gate dielectric is over the second transition metal dichalcogenide layer, and a gate is over the gate dielectric.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: April 23, 2019
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., National Taiwan University
    Inventors: Pin-Shiang Chen, Hung-Chih Chang, Chee-Wee Liu, Samuel C. Pan
  • Patent number: 10269906
    Abstract: A semiconductor device includes a substrate, a source/drain feature, a gate structure, a contact, a gate spacer, and a contact spacer. The source/drain feature is at least partially disposed in the substrate. The gate structure is disposed on the substrate and adjacent to the source/drain feature. The contact is electrically connected to the source/drain feature. The gate spacer is disposed on a sidewall of the gate structure and between the gate structure and the contact. The contact spacer is disposed on the gate spacer and on a sidewall of the contact. An interface is formed between the gate spacer and the contact spacer, and a bottom surface of the contact spacer is in contact with the contact.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Po-Hsueh Li
  • Patent number: 10270992
    Abstract: A device includes a current source and sampling units. Each of the sampling units includes a transistor and a capacitor electrically coupled to a gate of the transistor. The sampling units are sequentially activated such that the capacitor samples a voltage of a column line of a pixel array and are activated together such that the transistor is turned on according to the sampled voltage of the capacitor, to drain a current from the current source through an output node to generate an output voltage thereat.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Fu Yeh, Chih-Lin Lee, Chin Yin, Kuo-Yu Chou
  • Patent number: 10268326
    Abstract: A source line through which a video signal is transmitted also serves as a driving electrode of a touch sensor. To perform display, a video signal is transmitted to the source line. To sense the touch, a driving signal is transmitted to the source line. A circuit for transmitting the video signal and the driving signal to the source line has a structure in which a period for transmitting the driving signal is added in the wiring through which the digital video signal is transmitted and the output to the source line is switched by using a switching circuit. Alternatively, the circuit has a structure in which a period for transmitting the driving signal is added in a wiring through which a latch signal is transmitted and the output to the source line is switched.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 23, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hidetomo Kobayashi
  • Patent number: 10269705
    Abstract: A semiconductor structure includes a first dielectric layer, a first conductive via, a partial landing pad, a second dielectric layer, and a second conductive via. The first conductive via is disposed in the first dielectric layer. The partial landing pad is disposed on the first conductive via and the first dielectric layer, in which the partial landing pad has a top surface and a bottom surface, and the top surface of the partial landing pad has a width greater than or substantially equal to that of the bottom surface of the partial landing pad. The second dielectric layer is disposed on the partial landing pad. The second conductive via is disposed in the second dielectric layer and electrically connected to the partial landing pad.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kai-Yu Cheng, Shih-Kang Tien, Ching-Kun Huang
  • Patent number: 10269844
    Abstract: Structures and formation methods of a light sensing device are provided. The light sensing device includes a semiconductor substrate and a light sensing region in the semiconductor substrate. The light sensing device also includes a filter element over the semiconductor substrate and aligned with the light sensing region. The filter element has a first portion and a second portion, and the first portion is between the second portion and the light sensing region. The light sensing device further includes a light shielding element over the semiconductor substrate and beside the first portion of the filter element. In addition, the light sensing device includes a dielectric element over the light shielding element and beside the second portion of the filter element. A top width of the light shielding element is greater than a bottom width of the dielectric element.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Wei Cheng, Yi-Hsing Chu, Yin-Chieh Huang, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Hsin-Chi Chen
  • Patent number: 10269965
    Abstract: A multi-gate semiconductor device includes a substrate, a stacked wire structure disposed over the substrate, a gate over the stacked wire structure, and at least a first spacer disposed over two sidewalls of the gate. The gate further includes a gate conductive structure wrapping the stacked wire structure and a gate dielectric layer sandwiched between the gate conductive structure and the stacked wire structure. Further, sidewalls of the gate conductive structure are in contact with the first spacer.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: I-Sheng Chen, Tzu-Chiang Chen, Cheng-Hsien Wu, Ling-Yen Yeh, Carlos H. Diaz