Patents Assigned to Optimedica Corporation
  • Patent number: 9445946
    Abstract: A laser eye surgery system includes a laser source, a ranging subsystem, an integrated optical subsystem, and a patient interface assembly. The laser source produces a treatment beam that includes a plurality of laser pulses. The ranging subsystem produces a source beam used to locate one or more structures of an eye. The ranging subsystem includes an optical coherence tomography (OCT) pickoff assembly that includes a first optical wedge and a second optical wedge separated from the first optical wedge. The OCT pickoff assembly is configured to divide an OCT source beam into a sample beam and a reference beam. The integrated optical subsystem is used to scan the treatment beam and the sample beam. The patient interface assembly couples the eye with the integrated optical subsystem so as to constrain the eye relative to the integrated optical subsystem.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: September 20, 2016
    Assignee: Optimedica Corporation
    Inventors: David Angeley, Zhao Wang
  • Patent number: 9402715
    Abstract: A method of treating a lens of a patient's eye includes generating a light beam, deflecting the light beam using a scanner to form a treatment pattern of the light beam, delivering the treatment pattern to the lens of a patient's eye to create a plurality of cuts in the lens in the form of the treatment pattern to break the lens up into a plurality of pieces, and removing the lens pieces from the patient's eye. The lens pieces can then be mechanically removed. The light beam can be used to create larger segmenting cuts into the lens, as well as smaller softening cuts that soften the lens for easier removal.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: August 2, 2016
    Assignee: Optimedica Corporation
    Inventors: William Culbertson, Barry Seibel, Neil Friedman, Georg Schuele, Philip Gooding
  • Patent number: 9364317
    Abstract: An intraocular lens assembly for positioning in a lens capsule of a patient's eye is disclosed. The intraocular lens is placed within an enclosed incision in target tissue in the patient's eye, wherein the incision is formed by a laser system including a scanner for deflecting a light beam to form an enclosed treatment pattern including a registration feature in the target tissue, and wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: June 14, 2016
    Assignee: OPTIMEDICA CORPORATION
    Inventors: William Culbertson, Mark Blumenkranz, David Angeley, George Marcellino, Michael Wiltberger, Dan Andersen
  • Patent number: 9351879
    Abstract: Configurations are described for conducting ophthalmic procedures to address cataract-related clinical challenges. In one embodiment, a one-piece patient contact interface may be utilized to couple a diagnostic and/or interventional system to a cornea of a patient; in another embodiment, a two-part configuration may be utilized; in another embodiment, a liquid interface two-part embodiment may be utilized.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 31, 2016
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Phillip Gooding, David Angeley
  • Patent number: 9278028
    Abstract: A system for cataract surgery on an eye of a patient is described.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: March 8, 2016
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Neil Friedman, Barry Seibel, William Culbertson, Georg Schuele, Dan Andersen
  • Patent number: 9271870
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: March 1, 2016
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9237967
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: January 19, 2016
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan Talamo
  • Patent number: 9233023
    Abstract: A system and method of treating target tissue in a patient's eye, which includes generating a light beam, deflecting the light beam using a scanner to form first and second treatment patterns, delivering the first treatment pattern to the target tissue to form an incision that provides access to an eye chamber of the patient's eye, and delivering the second treatment pattern to the target tissue to form a relaxation incision along or near limbus tissue or along corneal tissue anterior to the limbus tissue of the patient's eye to reduce astigmatism thereof.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: January 12, 2016
    Assignee: OPTIMEDICA CORPORATION
    Inventors: William Culbertson, David Angeley, George Marcellino, Dan E. Andersen
  • Patent number: 9233024
    Abstract: A system and method of treating target tissue in a patient's eye, which includes generating a light beam, deflecting the light beam using a scanner to form first and second treatment patterns, delivering the first treatment pattern to the target tissue to form an incision that provides access to an eye chamber of the patient's eye, and delivering the second treatment pattern to the target tissue to form a relaxation incision along or near limbus tissue or along corneal tissue anterior to the limbus tissue of the patient's eye to reduce astigmatism thereof.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: January 12, 2016
    Assignee: OPTIMEDICA CORPORATION
    Inventors: William Culbertson, David Angeley, George Marcellino, Dan E. Andersen
  • Publication number: 20150366712
    Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 24, 2015
    Applicant: OptiMedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20150335477
    Abstract: A system for ophthalmic surgery includes a laser source configured to deliver an ultraviolet laser beam comprising laser pulses having a wavelength between 320 nm and 370 nm to photodecompose one or more intraocular targets within the eye with chromophore absorbance. The pulse energy, the pulse duration, and the focal spot are such that an irradiance at the focal spot is sufficient to photodecompose the one or more intraocular targets without exceeding a threshold of formation of a plasma and an associated cavitation event. An optical system operatively coupled to the laser source and configured to focus the ultraviolet laser beam to a focal spot and direct the focal spot in a pattern into the one or more intraocular targets. The optical system focuses the laser beam at a numerical aperture that provides for the focal spot to be scanned over a scan range of 6 mm to 10 mm.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Applicant: OPTIMEDICA CORPORATION
    Inventors: Georg Schuele, Dan Andersen, David Dewey
  • Publication number: 20150265147
    Abstract: An ophthalmic system may comprise an imaging device having a field of view oriented toward the eye of the patient; a patient interface housing defining a passage therethrough, having a distal end coupled to one or more seals configured to be directly engaged with one or more surfaces of the eye of the patient, and wherein the proximal end is configured to be coupled to the patient workstation such that at least a portion of the field of view of the imaging device passes through the passage; and two or more registration fiducials coupled to the patient interface housing in a predetermined geometric configuration relative to the patient interface housing within the field of view of the imaging device such that they may be imaged by the imaging device in reference to predetermined geometric markers on the eye of the patient which may also be imaged by the imaging device.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 24, 2015
    Applicant: OPTIMEDICA CORPORATION
    Inventors: Phillip Gooding, Michael Wiltberger, Christine Beltran, Jonathan Talamo
  • Patent number: 9125725
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision, and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 8, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9119704
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 1, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9119703
    Abstract: A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision, and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: September 1, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20150230980
    Abstract: A system and method for inserting an intraocular lens in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form an enclosed treatment pattern that includes a registration feature, and a delivery system for delivering the enclosed treatment pattern to target tissue in the patient's eye to form an enclosed incision therein having the registration feature. An intraocular lens is placed within the enclosed incision, wherein the intraocular lens has a registration feature that engages with the registration feature of the enclosed incision. Alternately, the scanner can make a separate registration incision for a post that is connected to the intraocular lens via a strut member.
    Type: Application
    Filed: May 1, 2015
    Publication date: August 20, 2015
    Applicant: OPTIMEDICA CORPORATION
    Inventors: William CULBERTSON, Mark BLUMENKRANZ, David ANGELEY, George MARCELLINO, Michael WILTBERGER, Dan ANDERSEN
  • Publication number: 20150230987
    Abstract: A method for cataract surgery on an eye of a patient includes scanning a first focus position of a first pulsed laser beam at a first pulse energy of between one-half microjoule and 50 microjoules in a first scanning pattern to photodisrupt a first tissue structure portion with a plurality of pulses of the first laser beam to form an incised surface; and afterwards, scanning a second focus position of a second pulsed laser beam having a second pulse energy being between 50 microjoules and 5,000 microjoules in a second scanning pattern that is co-registered to the first scanning pattern to further photodisrupt the same first tissue structure portion with the second laser beam to further separate segments of the first tissue structure along the incised surface.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Applicant: OPTIMEDICA CORPORATION
    Inventors: Neil Friedman, Barry Seibel, William Culbertson, Georg Schuele, Dan Andersen
  • Patent number: 9107732
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 18, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 9101448
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 11, 2015
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: D748269
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: January 26, 2016
    Assignee: Optimedica Corporation
    Inventors: Brent Eikanas, Christine Beltran, Phillip Gooding