Abstract: The embodiment of the invention discloses a channel estimation method for a TD-SCDMA system. The channel estimation method comprises steps of: obtaining a coarse channel estimation of a channel 1 of an intra-frequency cell set by a single cell channel estimation algorithm; performing an interference cancellation on the coarse channel estimation to obtain a channel estimation; determining a channel environment according to the channel estimation; and determining a stop strategy for the interference cancellation according to the channel environment and controlling performing the interference cancellation according to the stop strategy. The embodiment of the invention also discloses a channel estimation apparatus for a TD-SCDMA system, a communication device and a computer program executing the channel estimation method.
Abstract: A method of transmitting data allows flow control information to be transmitted with the user data over a synchronous bus. A channel is defined, identifying the source and at least one sink, and this includes the definition of a transport profile, indicating a flow control requirement for the data. Data is then transmitted from the source over the bus in at least one data time slot (30) and, if indicated by the transport profile, flow control information is also transmitted from the source over the bus in at least one flow control time slot (20) associated with the data time slot.
Abstract: An electronic device with a touch screen display that includes capacitive sensing to determine the point of contact between the display and an input device. The device also includes a graphics circuit for rendering images on the touch screen display. The graphics circuit may be inactivated when not in use. The inactive mode provides a variety of advantages, such as a lower power drain on the power source. The device is further configured to sense the approach of an input device in proximity to the display. The device is configured to start activating the graphics circuit upon sensing the approach of the input device prior to contact with the display. The timing of the activation improves responsiveness of the electronic device.
Abstract: A differential output stage of an amplification device, for driving a load, comprises a first and a second differential output stage portion. The first differential output stage portion comprises: a first and a second output circuit; a first driving circuit comprising a first biasing circuit; a second driving circuit comprising a second biasing circuit. The first differential output stage portion comprises: a third output circuit connected between a first node of said first biasing circuit and a first differential output terminal, having a third driving terminal connected to a first driving terminal; a fourth output circuit connected between a first node of the second biasing circuit and the first differential output terminal, having a fourth driving terminal connected to a second driving terminal.
Abstract: A microphone preamplifier circuit is adapted to be connected to a microphone circuit, the microphone circuit including a microphone and at least one output node. The microphone preamplifier circuit includes a preamplifier including: an operational amplifier having at least one input and at least one output; at least one input DC decoupling capacitor connected to the at least one input of the operational amplifier; at least one feedback capacitor connected between the input and the output of the operational amplifier in order to set together with the at least one input DC decoupling capacitor a gain value of the preamplifier circuit; and first and second feed nodes adapted to be fed by first and second bias voltages respectively. The preamplifier further includes at least one switched capacitor adapted to be selectively and alternatively connected in response to a clock signal: between the at least one input and the at least one output of the operational amplifier; and between the first and second feed nodes.
Abstract: A method of controlling a start-up sequence of a DC/DC Buck converter includes continuously comparing the Buck converter's output voltage with an internal reference voltage and continuously monitoring for a Buck converter start-up signal. If the output voltage is greater than the reference voltage when a Buck converter start-up signal is detected, the Buck converter is switched off and an output capacitor of the Buck converter is discharged through a pull-down unit until the output voltage substantially equals the internal reference voltage and then restarting the Buck converter.