Patents Assigned to Orthosensor
  • Patent number: 8689647
    Abstract: A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. Used intra-operatively, the sensing insert device (100) comprises an insert dock (202) and a sensing module (200). The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages, electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The sensing assemblages comprise a load disc (2004) and a piezo-resistive sensor (2002) to measure the parameter. An elastic support structure or springs (1108) is coupled between the top plate (1502) and the bottom plate (1504) to prevent cantilevering of a surface.
    Type: Grant
    Filed: July 1, 2012
    Date of Patent: April 8, 2014
    Assignee: Orthosensor Inc.
    Inventor: Marc Stein
  • Patent number: 8690888
    Abstract: A spine measurement system includes a plurality of sensored heads, a spinal instrument, and a remote system. The spinal instrument comprises a handle, a shaft, sensored heads, and a module. The sensored heads includes one or more sensors that couple to module and each has a different height. The module includes an electronic assembly for receiving, processing, and sending quantitative data from sensors in sensored heads. The module can be coupled to and removed from handle. Similarly, sensored heads can be coupled to and removed from shaft. A sensored head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI of remote system can display a workflow and report load and position of load during the workflow.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 8, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140094715
    Abstract: A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. An insert couples to the distractor. The insert has at least one articular surface allowing movement of the muscular-skeletal system when the distractor is inserted thereto. The insert can be a passive insert having no measurement devices. A sensor array and electronics are housed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Gabriel Carrasco, Martin Roche
  • Patent number: 8661893
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. The sensor couples to the support surface of the first structure. The support surface of the first structure is compliant. The first and second structure are coupled together housing the at least one sensor. In one embodiment, the first and second structure are welded together forming the hermetic seal that isolates the at least one sensor from an external environment. The at least one sensor can be a pressure sensor for measuring load and position of load.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 4, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20130268081
    Abstract: A prosthetic component suitable for trialing or long-term implantation is provided. The prosthetic component includes at least one sensor for measuring a parameter of the muscular-skeletal system or a biological parameter is disclosed. The prosthetic component comprises a conductive material. Electronic circuitry and sensors are housed within the prosthetic component. Data from the prosthetic component can be transmitted to a remote system. The prosthetic component can comprise steel, titanium, cobalt, an alloy, or other conductive material. At least a portion of the conductive material comprising the prosthetic component is coupled to ground to shield the sensor from parasitic coupling that can affect measurement accuracy. The prosthetic component can have an opening in the shield to allow sensing or transmission of data.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Applicant: ORTHOSENSOR
    Inventors: Marc Stein, Andrew U. Chase
  • Publication number: 20130261450
    Abstract: A sensor system uses positive closed-loop feedback to provide energy waves into a medium. The medium can be coupled to the muscular-skeletal system or be part of the muscular-skeletal system. A sensor comprises one or more transducers, an edge detect circuit or a reflecting surface. A parameter is applied to the medium and the parameter affects the medium. A transducer receives an energy wave that has traversed the medium and generates an energy wave signal. The edge-detect receiver receives the energy wave signal signal from the transducer and generates a pulse upon sensing a leading edge corresponding to a wave front of the energy wave. The edge-detect receiver comprises a preamplifier, a differentiator, a digital pulse circuit, and a deblank circuit. The transit time, phase, or frequency is measured of the propagating energy waves and correlated to the parameter being measured.
    Type: Application
    Filed: May 24, 2013
    Publication date: October 3, 2013
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Andrew Kelly
  • Patent number: 8539830
    Abstract: A measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a propagation medium is disclosed. The measurement system comprises a compressible waveguide (403), ultrasonic transducers (405, 406), and circuitry to sustain energy wave propagation in the waveguide (403). The circuitry includes a propagation tuned oscillator (404), a digital counter (409), a pulse generator (410), a phase detector (414), a counter (420), a digital timer (422), and a data register (424). The measurement system employs a continuous mode (CM), pulse mode, or pulse-echo mode of operation to evaluate propagation characteristics of continuous ultrasonic waves in the waveguide by way of closed-loop feedback to determine levels of applied forces on the waveguide.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: September 24, 2013
    Assignee: OrthoSensor Inc.
    Inventor: Marc Stein
  • Publication number: 20130225982
    Abstract: A system and method for is provided for operation of an orthopedic system. The system includes a load sensor for converting an applied pressure associated with a force load on an anatomical joint, and an ultrasonic device for creating a low-power short-range ultrasonic sensing field within proximity of the load sensing unit for assessing alignment. The system can adjust a strength and range of the ultrasonic sensing field according to position. It can report audible and visual information associated with the force load and alignment. Other embodiments are disclosed.
    Type: Application
    Filed: March 25, 2013
    Publication date: August 29, 2013
    Applicant: ORTHOSENSOR INC
    Inventors: Jason McIntosh, Martin Roche, Marc Boillot, Carlos Gil
  • Publication number: 20130226036
    Abstract: A measurement device suitable to measure a force, pressure, or load applied by the muscular-skeletal system is disclosed. The measurement module includes a unitary circuit board that couples electronic circuitry to sensors. In one embodiment, the sensors are integrated in the unitary circuit board. Using more than one sensor allows the position of applied load by the muscular-skeletal system to be measured. In one embodiment, the sensors of a sensor array can be elastically compressible capacitors. A load plate can underlie the sensor array. Similarly, a load plate can overlie the load plate. Load plates are rigid structures for distributing a force, pressure, or load. The measurement device can include an articular surface for allowing movement of the muscular-skeletal system. A remote system can be in proximity to the measurement device. The remote system can receive, process, and display data from the measurement module in real-time.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 29, 2013
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Gabriel Carrasco
  • Publication number: 20130226035
    Abstract: A measurement device suitable to measure a load applied by the muscular-skeletal system is disclosed. The measurement device can be a prosthetic component having an articular surface for measuring parameters of a joint in extension or flexion. A first and second support structure forms an enclosure having load-bearing surfaces. The first support structure includes at least one alignment feature extending from a surface. The second support structure includes a corresponding opening for receiving the alignment feature. The first and second support structures include a peripheral channel and corresponding flange to support sealing of the enclosure. Interior to the enclosure is the measurement system. The alignment feature couples through and aligns a first load plate, a sensor array, and a second load plate to surfaces of the first and second support structures. The sensor array is coupled to electronic circuitry in the enclosure via a unitary circuit board.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 29, 2013
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Gabriel Carrasco
  • Publication number: 20130226034
    Abstract: A measurement device suitable to measure a force, pressure, or load applied by the muscular-skeletal system is disclosed. The measurement module includes a unitary circuit board that couples electronic circuitry to sensors. In one embodiment, the sensors are integrated in the unitary circuit board. Using more than one sensor allows the position of applied load by the muscular-skeletal system to be measured. In one embodiment, the sensors of a sensor array can be elastically compressible capacitors. A load plate can underlie the sensor array. Similarly, a load plate can overlie the load plate. Load plates are rigid structures for distributing a force, pressure, or load. The measurement device can include an articular surface for allowing movement of the muscular-skeletal system. A remote system can be in proximity to the measurement device. The remote system can receive, process, and display data from the measurement module in real-time.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 29, 2013
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Gabriel Carrasco
  • Patent number: 8516884
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. The sensor couples to the support surface of the first structure. The first and second structure are coupled together housing the at least one sensor. The first and second structures comprises steel, titanium, cobalt or an alloy thereof. At least one of the first or second structures is coupled to ground to shield the sensor from parasitic coupling. The at least one sensor can be a pressure sensor for measuring load and position of load.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: August 27, 2013
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Patent number: 8516907
    Abstract: A load sensing platform (121) is disclosed for capturing a transit time, phase, or frequency of energy waves propagating through a medium that measures a parameter of the muscular-skeletal system. The load sensing platform (121) comprises a sensing assemblage (1), substrates (702, 704, and 706), springs (315), spring posts (708), and spring retainers (710). The sensing assemblage (1) comprises a stack of a transducer (5), waveguide (3), and transducer (6). A parameter is applied to the contact surfaces (8) of the load sensing platform (121). The sensing assemblage (1) measures changes in dimension due to the parameter. Position of the applied parameter can be measured by using more than one sensing assemblage (1). The springs (315) couple to the substrates (702, 704) providing mechanical support and to prevent cantilevering. The spring posts (708) and spring retainers (710) maintain the springs (315) at predetermined locations in the load sensing platform (121).
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 27, 2013
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, James Ellis
  • Patent number: 8494805
    Abstract: A method for determining orthopedic alignment is provided. The method includes monitoring a first and second sequence of signals transmitted from the first device to a second device, estimating a location of the first device from sensory measurements of the signals at respective sensors on the second device, calculating a set of phase differences, weighting a difference of an expected location and estimated location of the first device with the set of phase differences to produce a relative displacement, and reporting a position of an orthopedic instrument coupled to the first device based on the relative displacement.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: July 23, 2013
    Assignee: Orthosensor
    Inventors: Martin Roche, Jason McIntosh, Marc Boillot, Carlos Gil
  • Patent number: 8490488
    Abstract: A sensor system uses positive closed-loop feedback to provide energy waves into a medium. A sensor comprises a transducer (604), a propagating structure (602), and a reflecting surface (606). A parameter is applied to the propagating structure that affects the medium. The sensor is coupled to a propagation tuned oscillator (416) that forms the positive closed-loop feedback path with the sensor. The propagation tuned oscillator (416) includes an edge-detect receiver (200) that generates a pulse upon sensing a wave front of an energy wave in propagating structure (602). The edge-detect receiver (100) is in the feedback path that continues emitting energy waves into the propagating structure (602). The edge-detect receiver (200) comprises a preamplifier (212), a differentiator (214), a digital pulse circuit (216), and a deblank circuit (218). The transit time, phase, or frequency is measured of the propagating energy waves and correlated to the parameter being measured.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: July 23, 2013
    Assignee: Orthosensor Inc
    Inventors: Marc Stein, Andrew Kelly
  • Patent number: 8427176
    Abstract: At least one embodiment is directed to a sensor for measuring a parameter. A signal path of the system comprises an amplifier (612), a sensor element, and an amplifier (620). The sensor element comprises a transducer (4), a waveguide (5), and a transducer (30). A parameter such as force or pressure applied to the sensor element can change the length of waveguide (5). A pulsed energy wave is emitted by the transducer (4) into the waveguide (5) at a first location. The transducer (30) is responsive pulsed energy waves at a second location of the waveguide (5). The transit time of each pulsed energy wave is measured. The transit time corresponds to the pressure or force applied to the sensor element.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: April 23, 2013
    Assignee: Orthosensor Inc
    Inventor: Marc Stein
  • Patent number: 8424384
    Abstract: A measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a propagation medium is disclosed. The measurement system comprises two different closed-loop feedback paths. The first path includes a driver circuit (628), a transducer (604), a propagation medium (602), a transducer (606), and a zero-crossing receiver (640). The zero-crossing receiver (640) detects transition states of propagated energy waves in the propagation medium including the transition of each energy wave through a mid-point of a symmetrical or cyclical waveform. A second path includes the driver circuit (1228), a transducer (1204), a propagation medium (1202), a reflecting surface (1206), and an edge-detect receiver (1240). Energy waves in the propagating medium (1202) are reflected at least once. The edge-detect receiver (1240) detects a wave front of an energy wave. Each positive closed-loop path maintains the emission, propagation, and detection of energy waves in the propagation medium.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: April 23, 2013
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Kelly
  • Publication number: 20130079790
    Abstract: A spine measurement system includes at least one spinal instrument and a remote system. The spinal instrument comprises a handle, a shaft, an accelerometer, a sensored head, and an electronic assembly. The sensored head includes one or more sensors that are operatively coupled to the electronic assembly. The sensored head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI of remote system can report position via the accelerometer to show spinal instrument relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ORTHOSENSOR
    Inventors: Marc Stein, Andrew U. Chase
  • Publication number: 20130079792
    Abstract: A spinal instrument includes sensors for measuring a parameter of the muscular-skeletal system. The spinal instrument includes a sensored head region that can be inserted into a spinal region. The spinal instrument comprises a housing, a housing, an electronic assembly, and a flexible interconnect. Housing includes a handle portion, a shaft portion, and a support structure. Similarly, housing includes a handle portion, a shaft portion, and a support structure. Furthermore, housing has a cavity and a lengthwise passage respectively for receiving electronic assembly and flexible interconnect. A sensored head region of spinal instrument includes an assembly stack for measuring load magnitude and position of load on the support structure and the support structure. The flexible interconnect couples the electronic assembly to the sensors.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ORTHOSENSOR
    Inventors: Marc Stein, Andrew U. Chase
  • Publication number: 20130079672
    Abstract: At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert can be less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The insert includes a flexible articular surface. Flexible articular surface transfers loading to sensors internal to the insert.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ORTHOSENSOR
    Inventors: Marc Stein, Andrew P. Miller, Jason Addink, Andrew U. Chase