Patents Assigned to Orthosensor
  • Publication number: 20140200584
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device. The capacitor is shielded from parasitic coupling and parasitic capacitance.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 17, 2014
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase
  • Patent number: 8777877
    Abstract: A spine measurement system includes at least one spinal instrument and a remote system. The spinal instrument comprises a handle, a shaft, an accelerometer, a sensored head, and an electronic assembly. The sensored head includes one or more sensors that are operatively coupled to the electronic assembly. The sensored head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI of remote system can report position via the accelerometer to show spinal instrument relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 15, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140194707
    Abstract: An orthopedic system to monitor a parameter related to the muscular-skeletal system is disclosed. The orthopedic system includes electronic circuitry, a sensor, and a remote system to monitor and measure. The sensor is configured to measure color or turbidity. The electronic circuitry is coupled to and interfaces with the sensor. The electronic circuit includes a transmitter to transmit measurement data from the sensor to the remote system. The orthopedic system is configured to monitor color or turbidity of a fluid in proximity to the muscular-skeletal system. The orthopedic system can transmit a signal when a predetermined color is detected or when the turbidity of the fluid exceeds a predetermined value. Alternatively, the remote system includes a processor and software configured to analyze the measurement data from the sensor and transmit a signal when a predetermined color is detected or when the turbidity of the fluid exceeds a predetermined value.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
  • Publication number: 20140188117
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device. The capacitor is shielded from parasitic coupling and parasitic capacitance.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140188007
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140171754
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component includes electronic circuitry and sensors to measure a parameter of the muscular-skeletal system. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. Sensors can be used to monitor synovial fluid in proximity to the joint to determine joint health. The prosthetic component can include a temperature sensor, a pH sensor, and an optical sensor. The temperature, pH, color, and turbidity of the synovial fluid can be correlated to a variety of joint conditions. Measurements over time can be analyzed for trends. The temperature, pH, color, and tubidity can be calibrated for the patient. The measurements are compared against this patient reference.
    Type: Application
    Filed: February 17, 2014
    Publication date: June 19, 2014
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
  • Patent number: 8746062
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Publication number: 20140148676
    Abstract: A dual-mode closed-loop measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a medium is disclosed. A first module comprises an inductor drive circuit, an inductor, a transducer, and a filter. A second module housed in a screw comprises an inductor and a transducer. The screw is bio-compatible and allows an accurate delivery of the circuit into the muscular-skeletal system. The inductor can be attached and interconnected on a flexible substrate that fits into a cavity in the screw. The first and second modules are operatively coupled together. The first module provides energy to power the second module. The second module emits an energy wave into the medium that propagates to the first module. The transit time of energy waves is measured and correlated to the parameter by known relationship.
    Type: Application
    Filed: February 4, 2014
    Publication date: May 29, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140136143
    Abstract: At least one embodiment is directed to a tracking system for the muscular-skeletal system. The tracking system can identify position and orientation. The tracking system can be attached to a device or integrated into a device. In one embodiment, the tracking system couples to a handheld tool. The handheld tool with the tracking system and one or more sensors can be used to generate tracking data of the tool location and trajectory while measuring parameters of the muscular-skeletal system at an identified location. The tracking system can be used in conjunction with a second tool to guide the second tool to the identified location of the first tool. The tracking system can guide the second tool along the same trajectory as the first tool. For example, the second tool can be used to install a prosthetic component at a predetermined location and a predetermined orientation. The tracking system can track hand movements of a surgeon holding the handheld tool within 1 millimeter over a path less than 5 meters.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: Orthosensor Inc
    Inventors: Marc Stein, Glen Vaughn
  • Publication number: 20140135616
    Abstract: A prosthetic hip installation system comprising a reamer, an impactor, a tracking element, and a remote system. The tracking element can be integrated into the reamer or impactor for providing tracking data on the position or orientation. Alternatively, the tracking element can be housed in a separate module that can be coupled to either the reamer or impactor. The tracking element will couple to a predetermined location. Points in 3D space can be registered to provide a frame of reference for the tracking element or when the tracking element is moved from tool to tool. The tracking element sends data from the reamer or impactor wirelessly. The remote system receives the tracking data and can further process the data. A display on the remote system can support placement and orientation of the tool to aid in the installation of the prosthetic component.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: Orthosensor Inc
    Inventors: Marc Stein, Glen Vaughn
  • Publication number: 20140135624
    Abstract: A sensing assemblage for capturing a transit time, phase, or frequency of energy waves propagating through a medium is disclosed to measure a parameter of the muscular-skeletal system. The sensing assemblage comprises a transducer and a waveguide. The transducer is coupled to the waveguide at a first location. A reflective surface can be coupled to the waveguide at a second location. The reflective surface is configured to reflect energy waves away from the reflective surface. An interface material that is transmissive to acoustic energy waves can be placed between the transducer and a waveguide to improve transfer.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 15, 2014
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, James Ellis, SR.
  • Publication number: 20140134586
    Abstract: A prosthetic hip installation system comprising a reamer, an impactor, a tracking element, and a remote system. The tracking element can be integrated into the reamer or impactor for providing tracking data on the position or orientation. Alternatively, the tracking element can be housed in a separate module that can be coupled to either the reamer or impactor. The tracking element will couple to a predetermined location. Points in 3D space can be registered to provide a frame of reference for the tracking element or when the tracking element is moved from tool to tool. The tracking element sends data from the reamer or impactor wirelessly. The remote system receives the tracking data and can further process the data. A display on the remote system can support placement and orientation of the tool to aid in the installation of the prosthetic component.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: Orthosensor Inc
    Inventors: Marc Stein, Glen Vaughn
  • Publication number: 20140135773
    Abstract: A prosthetic hip installation system comprising a reamer, an impactor, a tracking element, and a remote system. The tracking element can be integrated into the reamer or impactor for providing tracking data on the position or orientation. Alternatively, the tracking element can be housed in a separate module that can be coupled to either the reamer or impactor. The tracking element will couple to a predetermined location. Points in 3D space can be registered to provide a frame of reference for the tracking element or when the tracking element is moved from tool to tool. The tracking element sends data from the reamer or impactor wirelessly. The remote system receives the tracking data and can further process the data. A display on the remote system can support placement and orientation of the tool to aid in the installation of the prosthetic component.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Glen Vaughn
  • Publication number: 20140135744
    Abstract: At least one embodiment is directed to a tracking system for the muscular-skeletal system. The tracking system can identify position and orientation. The tracking system can be attached to a device or integrated into a device. In one embodiment, the tracking system couples to a handheld tool. The handheld tool with the tracking system and one or more sensors can be used to generate tracking data of the tool location and trajectory while measuring parameters of the muscular-skeletal system at an identified location. The tracking system can be used in conjunction with a second tool to guide the second tool to the identified location of the first tool. The tracking system can guide the second tool along the same trajectory as the first tool. For example, the second tool can be used to install a prosthetic component at a predetermined location and a predetermined orientation. The tracking system can track hand movements of a surgeon holding the handheld tool within 1 millimeter over a path less than 5 meters.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Glen Vaughn
  • Patent number: 8714009
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device. The capacitor is shielded from parasitic coupling and parasitic capacitance.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 6, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Patent number: 8707782
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component includes electronic circuitry and sensors to measure a parameter of the muscular-skeletal system. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. One or more sensors can be used to monitor synovial fluid in proximity to the joint to determine joint health. The prosthetic component includes a transmissive region. One or more optical sensors are mounted in proximity to the transmissive region. Periodic measurements of the synovial fluid are measured through the transmissive region. The measurements can include color and turbidity of the synovial fluid. The color and turbidity data can be compared against known data to determine joint status.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 29, 2014
    Assignee: Orthosensor Inc
    Inventors: Marc Stein, Andrew U. Chase, Philip Henson, Natalie Burkhard, John Keggi, Noah Bonnheim
  • Patent number: 8701484
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Publication number: 20140107796
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. The sensor couples to the support surface of the first structure. The first and second structure are coupled together housing the at least one sensor. In one embodiment, the first and second structure are welded together forming the hermetic seal that isolates the at least one sensor from an external environment. The at least one sensor can be a pressure sensor for measuring load and position of load.
    Type: Application
    Filed: December 26, 2013
    Publication date: April 17, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Andrew Chase
  • Patent number: 8696756
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 15, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Patent number: 8690929
    Abstract: A dual-mode closed-loop measurement system (100) for capturing a transit time, phase, or frequency of energy waves propagating through a medium (122) is disclosed. A first module comprises an inductor drive circuit (102), an inductor (104), a transducer (106), and a filter (110). A second module housed in a screw (335) comprises an inductor (114) and a transducer (116). The screw (335) is bio-compatible and allows an accurate delivery of the circuit into the muscular-skeletal system. The inductor can be attached and interconnected on a flexible substrate (331) that fits into a cavity in the screw (335). The first and second modules are operatively coupled together. The first module provides energy to power the second module. The second module emits an energy wave into the medium that propagates to the first module. The transit time of energy waves is measured and correlated to the parameter by known relationship.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: April 8, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Martin Roche