Patents Assigned to Pacesette, Inc.
-
Publication number: 20210330986Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include controlling communication pulse parameter(s) of one or more communication pulses (produced by pulse generator(s)) based on accelerator output(s) indicative of the orientation of the IMD. The communication pulse parameter(s) that is/are controlled can be, e.g., communication pulse amplitude, communication pulse width, communication pulse timing, and/or communication pulse morphology. Such embodiments can be used to improve conductive communications between IMDs whose orientation relative to one another may change over time, e.g., due to changes in posture and/or due to cardiac motion over a cardiac cycle.Type: ApplicationFiled: July 8, 2021Publication date: October 28, 2021Applicant: Pacesetter, Inc.Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
-
Patent number: 11154719Abstract: A method and device for dynamic device based AV delay adjustment are provided. The method provides electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors, in an implantable medical device (IMD), for detecting an atrial paced (Ap) event or atrial sensed (As) event. The method determines a measured AV interval corresponding to an interval between the Ap event or the As event and a ventricular sensed event and calculates a percentage-based (PB) offset based on the measured AV interval. The method automatically dynamically adjusting an AV delay, utilized by the IMD, based on the measured AV interval and the PB offset and manages a pacing therapy, utilized by the IMD, based on the AV delay after the adjusting operation.Type: GrantFiled: September 18, 2019Date of Patent: October 26, 2021Assignee: Pacesetter, Inc.Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Aditya Goil, Kyungmoo Ryu
-
Patent number: 11147980Abstract: A method and system for managing an implantable medical device (IMD) based on left ventricular hypertrophy (LVH) are provided. The method collects cardiac activity (CA) signals from one or more implantable electrodes at corresponding sensing sites. The method utilizes one or more processors to perform identifying a characteristic of interest from the CA signals, analyzing the characteristic of interest from the CA signals to identify an LVH state indicative of at least one of an occurrence or degree of LVH experienced by the patient, calculating a DFT expectation based on the LVH state and determining, based on the DFT expectation, at least one of i) a defibrillation shock parameter or ii) a maximum energy capacity of the IMD for implant.Type: GrantFiled: April 11, 2019Date of Patent: October 19, 2021Assignee: Pacesetter, Inc.Inventor: Xiaoyi Min
-
Patent number: 11141597Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.Type: GrantFiled: March 8, 2019Date of Patent: October 12, 2021Assignee: Pacesetter, Inc.Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
-
Publication number: 20210308471Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.Type: ApplicationFiled: April 5, 2021Publication date: October 7, 2021Applicant: Pacesetter, Inc.Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
-
Publication number: 20210308470Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.Type: ApplicationFiled: April 5, 2021Publication date: October 7, 2021Applicant: Pacesetter, Inc.Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
-
Publication number: 20210299458Abstract: An implantable medical device includes a header body and a septum assembly. The header body includes a first welding surface and a septum bore extending inwardly from an outer surface to an inner cavity. The septum assembly is at least partially disposed within the septum bore of the header assembly and includes a septum configured to allow insertion of a tool through the septum into the inner cavity and to otherwise provide a seal. The septum assembly further includes a retainer within which at least a portion of the septum is retained. The retainer includes a welding feature coupled to the retainer body, the welding feature providing a second welding surface. The retainer is coupled to the header body by welding the first welding surface to the second welding surface.Type: ApplicationFiled: March 31, 2020Publication date: September 30, 2021Applicant: Pacesetter, Inc.Inventors: Asghar Dadashian, Christopher R. Jenney
-
Patent number: 11129993Abstract: A computer implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains cardiac activity (CA) signals at the electrodes of an implantable medical device (IMD) in connection multiple cardiac beats and with different IMD orientations relative to gravitational force. The method obtains acceleration signatures at a sensor of the IMD that are indicative of heart sounds generated during the cardiac beats. The method obtains device location information at the IMD, with respect to the gravitational force during the cardiac beats. The method groups the acceleration signatures associated with the first and second set of cardiac beats into the corresponding one of first and second posture bins based on the device location information.Type: GrantFiled: August 9, 2018Date of Patent: September 28, 2021Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Kyungmoo Ryu, Thanh Tieu, Gene A. Bornzin, Stuart Rosenberg
-
Publication number: 20210290965Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 is configured to time delivery of one or more pacing pulses delivered to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. The LP1 is also configured to transmit implant-to-implant (i2i) messages to the LP2. The LP2 is configured to time delivery of one or more pacing pulses delivered to the second chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP2 from the LP1.Type: ApplicationFiled: May 26, 2021Publication date: September 23, 2021Applicant: Pacesetter, Inc.Inventors: Xiaoyi Min, Matthew G. Fishler
-
Patent number: 11127938Abstract: A method of fabricating a battery electrode includes forming a mixture including an electrode material and a binder; forming an electrode blank from the mixture; heating the electrode blank at a predetermined temperature for a predetermined time to form an annealed electrode blank; and laminating the annealed electrode blank to a current collector. The current collector may include a conductive carbon coating. In such event, the method may further include heating the current collector at a selected temperature for a selected time prior to laminating the annealed electrode blank to the current collector.Type: GrantFiled: December 19, 2018Date of Patent: September 21, 2021Assignee: Pacesetter, Inc.Inventor: Xiaofei Jiang
-
Patent number: 11123006Abstract: Methods and devices are provided that collect intra-cardiac electrogram (EGM) signals over first and second sensing channels (channel-1 and channel-2 EGM signals, respectively) associated with an event of interest that includes a right ventricle (RV) and a left ventricle (LV), determine first, second and third global characteristics (GC) from the channel-1 and channel-2 EGM signals, and define a QRS start time within at least one of the EGM signals; and determine a threshold crossing. The methods and systems compare at least one of the first, second and third GC to the threshold crossing, select one of the first, second and third GC based on the comparing; defining a QRS end time, within at least one of the channel-1 and channel-2 EGM signals based on the one of the first, second and third GC selected, and calculate a QRS duration based on the QRS start time and QRS end time.Type: GrantFiled: January 27, 2020Date of Patent: September 21, 2021Assignee: Pacesetter, Inc.Inventors: Nima Badie, Jan Mangual-Soto, Luke McSpadden
-
Publication number: 20210278469Abstract: A method of screening a battery for failure mechanisms is provided. The method may include activating an electrochemical cell. Within 5 minutes to two hours of activating the cell, the open circuit voltage of the cell is measured over a period of time to determine a voltage versus time function. The cell is then screened for the presence of a failure mechanism by checking the voltage versus time function for a failure criteria.Type: ApplicationFiled: May 21, 2021Publication date: September 9, 2021Applicant: Pacesetter, Inc.Inventors: Steven Davis, Xiaofei Jiang, Joseph Beauvais
-
Publication number: 20210268295Abstract: An implantable medical device including a can, a feedthrough and an antenna assembly. The can includes a lead connector assembly, electronics, and a metal wall defining a hermetic sealed compartment. The electronics and lead connector assembly are located in the hermetic sealed compartment. The feedthrough extends through the metal wall between the hermetic sealed compartment and exterior the metal wall. The antenna assembly includes an antenna extending along the metal wall in a spaced-apart manner from the metal wall and encased in a dielectric material. The dielectric material occupies a space between the antenna and the metal wall. The antenna is electrically connected to the electronics via an RF conductor of the feedthrough.Type: ApplicationFiled: May 19, 2021Publication date: September 2, 2021Applicant: Pacesetter, Inc.Inventors: Wisit LIM, Perry LI
-
Patent number: 11108140Abstract: Devices and methods are provided for an implantable medical device (IMD) comprising a device housing having electronic components therein, a feedthrough assembly joined to the device housing, an antenna assembly, and a header body mounted to the device housing and enclosing the antenna assembly and feedthrough assembly. The antenna assembly including an inner conductor, a dielectric material, and an outer conductor arranged to form a coaxial structure.Type: GrantFiled: November 18, 2019Date of Patent: August 31, 2021Assignee: Pacesetter, Inc.Inventors: Perry Li, James T. Dean, Christopher A. Crawford
-
Publication number: 20210260380Abstract: Methods, systems, and devices that are used for improving cardiac resynchronization therapy (CRT) are described herein. Such a method can include, for each set of pacing parameters, of a plurality of sets of pacing parameters, performing CRT using a set of pacing parameters and simultaneously therewith sensing a plurality of intracardiac electrograms (IEGMs) using different combinations of implanted electrodes. Additionally, for each set of pacing parameters, of the plurality of sets of pacing parameters, the method includes producing a respective reconstructed multi-lead surface electrocardiogram (ECG) based on the plurality of IEGMs that were sensed while CRT was performed using the set of pacing parameters. The method also includes analyzing the reconstructed multi-lead surface ECGs that were produced for the plurality of sets of pacing parameters, and based on results thereof, identifying a set of pacing parameters to be use for further CRT.Type: ApplicationFiled: February 2, 2021Publication date: August 26, 2021Applicant: Pacesetter, Inc.Inventors: Donald L. Hopper, Luke C. McSpadden, Louis-Philippe Richer, Jan Mangual, Nima Badie, Chunlan Jiang
-
Patent number: 11097112Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes enabling a communication capability of an IMD during a message alert period and monitoring for a message while the communication capability is enabled during the message alert period. In response to receiving a message during the message alert period, there is a determination whether the message is valid or invalid. If the message is invalid, the message is ignored, and an invalid message count is incremented. A further message is monitored for during the message alert period occurs, when the invalid message count has not yet reached a corresponding invalid message count threshold. The communication capability of the IMD is disabled for a disable period, when the invalid message count reaches the corresponding invalid message count threshold. If a valid message is received, the IMD acts upon information included therein.Type: GrantFiled: March 16, 2020Date of Patent: August 24, 2021Assignee: Pacesetter, Inc.Inventors: Matthew G. Fishier, Benjamin T. Persson, Suresh Gurunathan
-
Patent number: 11097113Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 uses at least two of its electrodes to transmit and receive implant-to-implant (i2i) messages to and from the LP2. During one or more periods of time, the LP1 times delivery of pacing pulse(s) to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. During one or more further periods of time, the LP1 times delivery of pacing pulse(s) to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP1 from the LP2.Type: GrantFiled: January 7, 2019Date of Patent: August 24, 2021Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Matthew G. Fishler
-
Systems and methods for performing cardiac resynchronization therapy (CRT) using leadless pacemakers
Patent number: 11097116Abstract: Embodiments of the present technology described herein are directed to implantable systems for performing cardiac resynchronization therapy (CRT), methods for use therewith, and leadless pacemakers for use therewith. Such a system can include a first leadless pacemaker configured to be implanted in or on the right atrial (RA) chamber and selectively pace the RA chamber, a second leadless pacemaker configured to be implanted in or on the right ventricular (RV) chamber and selectively pace the RV chamber, and a third leadless pacemaker configured to be implanted in or on the left ventricular (LV) chamber and selectively pace the LV chamber, wherein one of the leadless pacemaker is designated a master leadless pacemaker. In certain embodiments, the master leadless pacemaker determines a VV delay and an AV delay and coordinates CRT using such delays.Type: GrantFiled: May 24, 2019Date of Patent: August 24, 2021Assignee: Pacesetter, Inc.Inventor: Xiaoyi Min -
Patent number: 11090497Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include controlling communication pulse parameter(s) of one or more communication pulses (produced by pulse generator(s)) based on accelerometer output(s) indicative of the orientation of the IMD. The communication pulse parameter(s) that is/are controlled can be, e.g., communication pulse amplitude, communication pulse width, communication pulse timing, and/or communication pulse morphology. Such embodiments can be used to improve conductive communications between IMDs whose orientation relative to one another may change over time, e.g., due to changes in posture and/or due to cardiac motion over a cardiac cycle.Type: GrantFiled: October 25, 2018Date of Patent: August 17, 2021Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
-
Publication number: 20210236041Abstract: Described herein are methods, devices, and systems that monitor heart rate and/or for arrhythmic episodes based on sensed intervals that can include true R-R intervals as well as over-sensed R-R intervals. True R-R intervals are initially identified from an ordered list of the sensed intervals by comparing individual sensed intervals to a sum of an immediately preceding two intervals, and/or an immediately following two intervals. True R-R intervals are also identified by comparing sensed intervals to a mean or median of durations of sensed intervals already identified as true R-R intervals. Individual intervals in a remaining ordered list of sensed intervals (from which true R-R intervals have been removed) are classified as either a short interval or a long interval, and over-sensed R-R intervals are identified based on the results thereof. Such embodiments can be used, e.g., to reduce the reporting of and/or inappropriate responses to false positive tachycardia detections.Type: ApplicationFiled: January 20, 2021Publication date: August 5, 2021Applicant: Pacesetter, Inc.Inventors: Nima Badie, Fujian Qu, Jong Gill