Patents Assigned to Pacesette, Inc.
-
Patent number: 11476057Abstract: A chemical etch is performed on a sheet of material. An electrochemical etch is performed on the sheet of material after the chemical etch is performed on the sheet of material. A capacitor is fabricated such that an electrode included in the capacitor includes material from the sheet of material after the electrochemical etch was performed on the sheet of material. In some instances, the chemical etch included at least partially immersing the sheet of material in an etch bath that includes molybdenum. Additionally or alternately, the chemical etch can be performed for a period of time less than 60 s.Type: GrantFiled: July 3, 2019Date of Patent: October 18, 2022Assignee: Pacesetter, Inc.Inventors: Justin King, Ralph Jason Hemphill, Timothy Marshall, David Bowen
-
Patent number: 11464984Abstract: Systems, devices, and methods for monitoring for atrial capture are disclosed. Such a method, for use within an implantable system including an atrial leadless pacemaker (aLP) and a ventricular leadless pacemaker (vLP), includes storing within a memory of the vLP a paced atrial activation morphology template corresponding to far-field atrial signal components expected to be present in a vEGM sensed by the vLP when an atrial pacing pulse delivered by the aLP captures atrial tissue. The vLP senses a vEGM and compares a morphology of a portion of the sensed vEGM to the paced atrial activation morphology template to determine whether a match therebetween is detected. Additionally, the vLP determines whether atrial capture occurred or failed to occur (responsive to an atrial pacing pulse), based on whether the vLP detects a match between the morphology of a portion of the sensed vEGM and the paced atrial activation morphology template.Type: GrantFiled: January 4, 2021Date of Patent: October 11, 2022Assignee: Pacesetter, Inc.Inventors: Chunlan Jiang, Gene A. Bornzin
-
Patent number: 11469052Abstract: A capacitor and a method of processing an anode metal foil are presented. The method includes electrochemically etching the metal foil to form a plurality of tunnels. Next, the etched metal foil is disposed within a widening solution to widen the plurality of tunnels. Exposed surfaces of the etched metal foil are then oxidized. The method includes removing a section of the etched metal foil, where the section of the etched metal foil includes exposed metal along an edge. The section of the etched metal foil is placed into a bath comprising water to form a hydration layer over the exposed metal on the section of the etched metal foil. The method also includes assembling the section of the etched metal foil having the hydration layer as an anode within a capacitor.Type: GrantFiled: January 11, 2021Date of Patent: October 11, 2022Assignee: Pacesetter, Inc.Inventors: David R. Bowen, Ralph Jason Hemphill
-
Publication number: 20220313161Abstract: Described herein are methods, devices, and systems that enable a remote non-implantable device (RNID) to send commands to a leadless pacemaker (LP) implanted within a patient. The RNID provide commands to a local non-implantable device (LNID) over one or more communication networks, and the LNID sends the commands to a second implantable device (SID) by transmitting radio frequency (RF) communication signals, which include the commands, using an antenna of the LNID. After receiving the commands from the LNID, by receiving RF communication signals that include the commands using an antenna of the SID, the SID transmits conductive communication signals, which include the commands, using electrodes of the SID. The LP receives the commands from the SID by receiving the conductive communication signals, which include the commands, using electrodes of the LP, and the LP performs command responses based on the commands that originated from the RNID.Type: ApplicationFiled: January 28, 2022Publication date: October 6, 2022Applicant: Pacesetter, Inc.Inventors: Reza Shahandeh, Gabriel Mouchawar, Mostafa Sadeghi, Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
-
Patent number: 11443902Abstract: A capacitor has an anode with one or more active layers that each includes fused particles positioned on a current collector. The current collector includes tunnels that extend from a first face of the current collector to a second face of the current collector.Type: GrantFiled: September 30, 2019Date of Patent: September 13, 2022Assignee: Pacesetter, Inc.Inventor: Xiaofei Jiang
-
Patent number: 11420069Abstract: Embodiments describe herein generally pertain to implantable medical device (IMDs), and methods for use therewith, that can be used to automatically switch an IMD from its normal operational mode to an MRI safe mode, and vice versa, within increased specificity. In certain embodiments, a controller of the IMD uses a magnetic field sensor to determine whether a first magnetic field condition is detected, and uses an accelerometer to determine whether a positional condition is detected. In response to the first magnetic field condition being detected, and the positional condition being detected, the controller can use the magnetic field sensor to determine whether a second magnetic field condition is detected, which differs from the first magnetic field condition. The controller can then cause the IMD to enter the MRI safe mode based at least in part on the first and second magnetic field conditions and the positional condition being detected.Type: GrantFiled: February 24, 2020Date of Patent: August 23, 2022Assignee: Pacesetter, Inc.Inventors: Xing Pei, Brad Lindevig, Stuart Rosenberg, Nima Badie
-
Publication number: 20220249842Abstract: A leadless biostimulator, and an electrical feedthrough assembly for use therewith, are described herein. The leadless biostimulator comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within a housing of the leadless biostimulator, and wherein the electrical feedthrough assembly is configured to be mounted on the housing of the leadless biostimulator.Type: ApplicationFiled: April 19, 2022Publication date: August 11, 2022Applicant: Pacesetter, Inc.Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
-
Publication number: 20220249850Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing in a His intracardiac electrogram (His IEGM), characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing within a His IEGM. Other embodiments of the present technology described herein relate to determining whether atrial capture occurs in response to His bundle pacing (HBP). Still other embodiments of the present technology described herein relate to determining whether AV node capture occurs in response to HBP.Type: ApplicationFiled: February 9, 2021Publication date: August 11, 2022Applicant: Pacesetter, Inc.Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
-
Publication number: 20220249849Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing in a His intracardiac electrogram (His IEGM), characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing within a His IEGM. Other embodiments of the present technology described herein relate to determining whether atrial capture occurs in response to His bundle pacing (HBP). Still other embodiments of the present technology described herein relate to determining whether AV node capture occurs in response to HBP.Type: ApplicationFiled: February 9, 2021Publication date: August 11, 2022Applicant: Pacesetter, Inc.Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
-
Patent number: 11400295Abstract: Systems and methods for His bundle pacing and classifying response to pacing impulses include applying, using a pulse generator, an impulse through a stimulating electrode to induce a response from a patient heart. A response to the impulse is measured using at least one sensing electrode and time-domain based characteristics of the response are analyzed to determine whether His bundle capture has occurred and, if so, what type of capture has occurred.Type: GrantFiled: May 5, 2020Date of Patent: August 2, 2022Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Yun Qiao, Wenwen Li, Jan O. Mangual-Soto, Luke C. McSpadden
-
Patent number: 11383089Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.Type: GrantFiled: April 26, 2018Date of Patent: July 12, 2022Assignee: Pacesetter, Inc.Inventor: Jennifer Rhude
-
Publication number: 20220212019Abstract: Described herein are external devices, and methods for use therewith, that are configured to communicate with one or more implantable medical devices (IMDs) implanted within a patient using conductive communication, wherein the external device includes or is communicatively coupled to at least three external electrodes that are in contact with the patient. Certain such methods involve the external device identifying, for each IMD, of the plurality of IMDs, which one of the plurality of communication vectors is a preferred communication vector for communicating with the IMD, based on respective indicators of conductive communication quality that are determined for the plurality of communication vectors. Certain embodiments involve determining when there should be a reassessment of which one of the plurality of communication vectors is the preferred communication vector for communicating with an IMD, and in response thereto, identifying an updated preferred communication vector for communicating with the IMD.Type: ApplicationFiled: March 22, 2022Publication date: July 7, 2022Applicant: Pacesetter, Inc.Inventors: Frank Lee, Thanh Tieu, Robert Williams, Suyashree Bhonsle, Jinto Zacharias, Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
-
Patent number: 11369305Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.Type: GrantFiled: January 13, 2020Date of Patent: June 28, 2022Assignee: Pacesetter, Inc.Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
-
Publication number: 20220184404Abstract: Methods and devices for managing establishment of a communications link between an external instrument (EI) and an implantable medical device (IMD) are provided. The methods and devices comprise storing, in memory in at least one of the IMD or the EI an advertising schedule defining a pattern for advertisement notices. The advertisement notices are distributed un-evenly and separated by unequal advertisement intervals. The method transmits, from a transmitter in at least one of the IMD or the EI the advertisement notices. The advertisement notices are distributed as defined by the advertising schedule. The method establishes a communication session between the IMD and the EI.Type: ApplicationFiled: March 7, 2022Publication date: June 16, 2022Applicant: Pacesetter, Inc.Inventors: Yongjian Wu, Samir Shah, Heidi Hellman, Reza Shahandeh, Tejpal Singh, Youjing Huang, Chao-Wen Young
-
Patent number: 11357414Abstract: A system for monitoring blood pressure includes an implantable medical device (IMD) and an external device (ED). The IMD senses an electrogram (EGM) signal, identifies a feature thereof indicative of a ventricular depolarization, and transmits a conductive communication signal through patient tissue indicating when the ventricular depolarization occurred. The ED is worn against skin and configured to receive the conductive communication signal. The ED is also configured to sense a plethysmography (PG) signal and identify a feature thereof indicative of when a pulse wave responsive to the ventricular depolarization reaches a region of the patient adjacent the ED, and determine a delay time (TD) indicative of how long it takes the pulse wave to travel from the patient's heart to the region of the patient adjacent to the ED. The TD is a surrogate of the patient's blood pressure and useful for monitoring the patient's blood pressure and/or changes therein.Type: GrantFiled: April 26, 2019Date of Patent: June 14, 2022Assignee: Pacesetter, Inc.Inventor: Dean P. Andersen
-
Patent number: 11362316Abstract: Batteries having hybrid electrode configurations are disclosed herein. In one embodiment, a battery comprises an electrode assembly. The electrode assembly comprises a first cathode including a first cathode active material, a second cathode including a second cathode active material different from the first cathode active material, a first anode disposed between the first cathode and the second cathode, a first separator interposed between the first cathode and the first anode, and a second separator interposed between the second cathode and the first anode.Type: GrantFiled: December 13, 2019Date of Patent: June 14, 2022Assignee: Pacesetter, Inc.Inventor: Xiaofei Jiang
-
Patent number: 11351384Abstract: An implantable medical device includes a header body and a septum assembly. The header body includes a first welding surface and a septum bore extending inwardly from an outer surface to an inner cavity. The septum assembly is at least partially disposed within the septum bore of the header assembly and includes a septum configured to allow insertion of a tool through the septum into the inner cavity and to otherwise provide a seal. The septum assembly further includes a retainer within which at least a portion of the septum is retained. The retainer includes a welding feature coupled to the retainer body, the welding feature providing a second welding surface. The retainer is coupled to the header body by welding the first welding surface to the second welding surface.Type: GrantFiled: March 31, 2020Date of Patent: June 7, 2022Assignee: Pacesetter, Inc.Inventors: Asghar Dadashian, Christopher R. Jenney
-
Patent number: 11338146Abstract: A system is provided for controlling a left univentricular (LUV) pacing therapy using an implantable medical device (IMD). The system also includes one or more processors configured to determine an atrial-ventricular (AV) conduction interval (ARRV) between the A site and a first RV sensed event at the RV site, determine an inter-ventricular (VV) conduction interval (RLV-RRV) between a paced event at the LV site and a second RV sensed event at the RV site, and set a ventricular refractory period (VRP) based on at least one of the AV conduction interval or the VV conduction interval and a predetermined offset. The one or more processors are also configured to blank signals over the RV sensing channel during the VRP.Type: GrantFiled: June 8, 2020Date of Patent: May 24, 2022Assignee: Pacesetter, Inc.Inventor: Jan O. Mangual-Soto
-
Patent number: 11342128Abstract: The electrolytic capacitor has a conductive sheet with a central portion defined by a peripheral edge, a first tail extending out from the peripheral edge in a first direction, and a second tail extending out from the peripheral edge in a second direction. The second direction is opposite the first direction. The first tail and the second tail each have a free end with a first recess at the free.Type: GrantFiled: November 25, 2019Date of Patent: May 24, 2022Assignee: Pacesetter, Inc.Inventors: Troy McCurry, Peter J. Fernstrom, Ralph Jason Hemphill
-
Patent number: 11331507Abstract: Implantable cardioverter device (ICD) systems capable of delivering a multi-vector defibrillation shock, and methods for use therewith, are described herein. Such an ICD system can include a defibrillation charge capacitor, a charge circuit, first, second, and third electrodes, switches, a controller, and first, second and third filters. The defibrillation charge capacitor is coupled between a first voltage rail and a second voltage rail. The first filter is coupled between the first and second electrodes, and the second filter is coupled between the second and third electrodes, so that the first and second filters can shunt EMI signals. The third filter is coupled between the first and third electrodes and configured to provide for electrical symmetry when the first, second, and third electrodes are used to deliver a multi-vector defibrillation shock. Such filters, which can be implemented using capacitors, can be used to make the ICD system MRI compatible.Type: GrantFiled: October 25, 2019Date of Patent: May 17, 2022Assignee: Pacesetter, Inc.Inventors: Jeffery Crook, Eiji Shirai, Arpitha Ravishankar