Patents Assigned to Pacesette, Inc.
  • Patent number: 11735711
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Russell Bruch, Joseph Beauvais, Jeffrey Armstrong, Del Charles Brooks, III, Christopher Hallmark, John Duggan
  • Patent number: 11730441
    Abstract: Methods and implantable medical devices (IMDs) are provided for monitoring a cardiac function of a heart. A heart sound sensor is configured to sense heart sound signals of the subject. The IMD includes a memory to store program instructions. The IMD includes a processor that, when executing the program instructions, is configured to identify S2 signal segment from the heart sound signals, analyze the S2 signal segment to identify a pulmonary valve signal (P2 signal) and an aortic valve signal (A2 signal) within an S2 signal segment of the heart sound signals. The processor is configured to determine a time interval between the A2 and P2 signals, characterize the S2 signal segment to exhibit a first type of S2 split based on the time interval, and identify a cardiac condition based on a comparison of the first type of S2 split and a cardiac condition matrix.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Stephanie C. Sun
  • Patent number: 11730378
    Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc
    Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
  • Patent number: 11730966
    Abstract: Described herein are methods, systems, and devices for estimating remaining longevity of an IMD powered by a battery that at any given time has a battery voltage (BV) and a remaining battery capacity (RBC). Such a method can include estimating the RBC using a first technique when the battery is operating within a t least one of one or more plateau regions, estimating the RBC using a second technique, that differs from the first technique when the battery is operating within a decline region, and estimating the remaining longevity of the IMD based on at least one of the estimates of the RBC. Additionally, historical battery data can be stored and used to estimate the RBC, e.g., when the battery is operating within a heavy usage and recovery period. RBC estimation can also depend on whether the IMD is close to its recommended replacement time (RRT).
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xing Pei, Garuda Rachamalla, Jia Qin
  • Patent number: 11717692
    Abstract: Certain embodiments of the present technology disclosed herein relate to implantable systems, and methods for use therewith, that use a temperature sensor to initially detect an onset of patient activity, and then use a motion sensor to confirm or reject the initial detection of the onset of patient activity. Other embodiments of the present technology disclosed herein relate to implantable systems, and methods for use therewith, that use a motion sensor to initially detect an onset of patient activity, and then use a temperature sensor to confirm or reject the initial detection of the onset of patient activity. The use of both a motion sensor and a temperature sensor provides improvements over using just one of the types of sensors for rate responsive pacing.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 8, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Paul Paspa
  • Patent number: 11722108
    Abstract: Described herein is a fully-differential preamplifier comprising an input differential pair, an output current load, and a current source. The current source is coupled between the input differential pair and a low voltage rail and configured to control whether the fully-differential preamplifier is operating in a first mode or a second mode, wherein the preamplifier draws more current when operating in the second mode compared to when operating in the first mode. The input differential pair is coupled between the output current load and the current source. The output current load is coupled between a high voltage rail and the input differential pair. The input differential pair comprise positive and negative inputs of the fully-differential preamplifier. Nodes where the input differential pair and the output current load are coupled to one another comprise positive and negative outputs of the fully-differential preamplifier.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: August 8, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Eric C. Labbe, Benjamin T. Persson
  • Patent number: 11717691
    Abstract: Cardiac pacing is performed using leadless pacemakers (LPs). An AV delay is determined based on a P-wave duration. When pacing occurs during cardiac cycles starting with intrinsic atrial events, the AV delay is set to the P-wave duration plus a first offset if the P-wave duration is greater than a first threshold duration, and the AV delay is set to the P-wave duration plus a second offset that is greater than the first offset, if the P-wave duration is less than the first threshold duration. When pacing occurs during cardiac cycles starting with paced atrial events, the AV delay is set to the P-wave duration plus a third offset, if the P-wave duration is greater than a second threshold duration, or is set to the P-wave duration plus a fourth offset that is greater than the third offset, if the P-wave duration is less than the second threshold duration.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: August 8, 2023
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Patent number: 11712751
    Abstract: Fabricating a capacitor includes performing an oxide formation operation on a sheet of material. The oxide formation operation forms an anode metal oxide on an anode metal. A thermal compression is performed on the sheet of material after the oxide formation operation is performed. The thermal compression applies thermal energy to the sheet of material while applying pressure to the sheet of material. After the thermal compression, the capacitor is assembled such that at least one electrode in the capacitor includes at least a portion of the sheet of material.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: August 1, 2023
    Assignee: Pacesetter. Inc.
    Inventors: Kurt J. Erickson, Jeffrey Jon Allison, John Moore, Thomas F. Strange, David R. Bowen
  • Patent number: 11712568
    Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing in a His intracardiac electrogram (His IEGM), characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing within a His IEGM. Other embodiments of the present technology described herein relate to determining whether atrial capture occurs in response to His bundle pacing (HBP). Still other embodiments of the present technology described herein relate to determining whether AV node capture occurs in response to HBP.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: August 1, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
  • Publication number: 20230233868
    Abstract: Methods and systems for terminating a pacemaker mediated tachycardia (PMT) are described herein. During a period that a PMT is not detected, an implantable system delivers an atrial pacing pulse to an atrial cardiac chamber in response to a PA interval expiring without an intrinsic atrial event being detected during the PA interval. The systems performs atrial sensing to thereby monitor for intrinsic atrial events in the atrial cardiac chamber, performs ventricular sensing to thereby monitor for intrinsic ventricular events in a ventricular cardiac chamber, and detects the PMT. Additionally, the system, in response to the PMT being detected, initiates a PMT PA interval that is shorter than the PA interval that the system would otherwise use for atrial pacing if the PMT was not detected.
    Type: Application
    Filed: April 4, 2023
    Publication date: July 27, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Chunlan Jiang, Matthew G. Fishler
  • Publication number: 20230233867
    Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include the IMD using an accelerometer to identify when the orientation of the IMD is such that the IMD will likely be able to successfully communicate with another IMD via one or more communication pulses sent from the IMD to the other IMD. The method also includes the IMD sending of the one or more communication pulses, that are used to communicate with the other IMD, when the orientation of the IMD is such that the IMD will likely be able to successfully communicate with the other IMD via one or more communication pulses sent from the IMD to the other IMD.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 27, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
  • Patent number: 11701051
    Abstract: Systems and methods for detecting arrhythmias in cardiac activity are provided and include memory to store specific executable instructions. One or more processors are configured to execute the specific executable instructions for obtaining first and second far field cardiac activity (CA) data sets over primary and secondary sensing channels, respectively, in connection with a series of beats. The system detects candidate atrial features from the second CA data set, identifies ventricular features from the first CA data set and utilizes the ventricular features to separate beat segments within the second CA data set. The system automatically iteratively analyzes the beat segments by overlaying an atrial activity search window with the second CA data set and determines whether one or more of the candidate atrial features occur within the atrial activity search window.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: July 18, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Diming Cao, Fady Dawoud
  • Patent number: 11701520
    Abstract: An implantable medical device, battery and method include memory configured to store program instructions. At least one of circuitry or a processor are configured to execute the program instructions in connection with at least one of monitoring a biological signal or administering a therapy. The device includes a battery comprising a cell stack that includes an anode, a cathode, and one or more separator layers electrically insulating the anode from the cathode. The device includes a case having a feedthrough port and a feedthrough assembly disposed in the feedthrough port. The feedthrough assembly includes a ferrule having a lumen. An inner conductor is disposed within the lumen of the ferrule. The inner conductor is formed from a material having a first composition and a first coefficient of thermal expansion (CTE). An insulating core is disposed within the lumen of the ferrule and separates the inner conductor from the ferrule.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: July 18, 2023
    Assignee: Pacesetter, Inc.
    Inventor: Xiaofei Jiang
  • Patent number: 11691019
    Abstract: Disclosed herein is an implantable pulse generator for administering electrotherapy via an implantable lead. The pulse generator includes a housing and a header connector assembly coupled to the housing. The header connector assembly includes a connector assembly and a header enclosing the connector assembly. The connector assembly includes a support and a connector receptacle. The support extends at least partially about the connector receptacle and is at least partially responsible for having prevented injection molding material from entering the connector receptacle when the injection molding material was injection molded about the connector assembly in forming the header.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: July 4, 2023
    Assignee: Pacesetter, Inc.
    Inventor: Brett C. Villavicencio
  • Patent number: 11691017
    Abstract: An electrical feedthrough assembly, which is configured to be mounted on a housing of a leadless biostimulator, comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within the housing of the leadless biostimulator.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: July 4, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11672949
    Abstract: A delivery system for an intracorporeal device includes a sheath defining one or more lumens shaped to receive a delivery catheter or shaft and a guidewire. The system may include a delivery shaft having a distal coupling feature adapted to releasably couple with a proximal coupling feature of the intracorporeal device. The delivery system may further include a hub through which the delivery shaft and guidewire are passed. The delivery shaft may be coupled to a feature, such as a knob, that enables manipulation of the delivery shaft to decouple the distal fixation feature from the proximal fixation feature of the intracorporeal device in order to deploy the intracorporeal device within a patient.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: June 13, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Tracee Eidenschink, Jin Woo Park, Jason A. White
  • Publication number: 20230173284
    Abstract: Implantable medical devices (IMDs), systems, and methods for use therewith are disclosed. One such method is for use by a leadless pacemaker (LP) configured to perform conductive communication with another implantable medical device (IMD). The method includes the LP storing information that specifies when, within a cardiac cycle, the LP and the other IMD implanted in a patient are likely oriented relative to one another such that conductive communication therebetween should be successful. The method also includes the LP sensing a signal indicative of cardiac activity of the patient over a plurality of cardiac cycles, and outputting one or more conductive communication pulses, during a portion of at least one of the cardiac cycles, wherein the portion of the at least one of the cardiac cycles is identified based on the signal that is sensed and the information that is stored.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 8, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
  • Patent number: 11670843
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 6, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Publication number: 20230171130
    Abstract: Described herein is a fully-differential receiver for use with an implantable medical device (IMD) and configured to receive conducted communication signals that are transmitted by another IMD or an external device. The fully-differential receiver includes a fully-differential preamplifier, a fully-differential buffer, a first comparator, a second comparator, and an AC coupling network coupled between differential outputs of the fully-differential buffer and a coupled together differential pair of inputs of the first and second comparators. A differential pair of inputs of the fully-differential receiver comprise the differential pair of inputs of the fully-differential preamplifier, and a differential pair of outputs of the fully-differential receiver comprise a first output of the first comparator and a second output of the second comparator. In order to conserve power, the fully-differential receiver is selectively changed from operating in a first mode to operating in a second mode, and vice versa.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Eric C. Labbe, Benjamin T. Persson
  • Publication number: 20230170863
    Abstract: Described herein is a fully-differential preamplifier comprising an input differential pair, an output current load, and a current source. The current source is coupled between the input differential pair and a low voltage rail and configured to control whether the fully-differential preamplifier is operating in a first mode or a second mode, wherein the preamplifier draws more current when operating in the second mode compared to when operating in the first mode. The input differential pair is coupled between the output current load and the current source. The output current load is coupled between a high voltage rail and the input differential pair. The input differential pair comprise positive and negative inputs of the fully-differential preamplifier. Nodes where the input differential pair and the output current load are coupled to one another comprise positive and negative outputs of the fully-differential preamplifier.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Eric C. Labbe, Benjamin T. Persson