Patents Assigned to Pacesetter, Inc.
  • Patent number: 12273935
    Abstract: A method, system and external instrument are provided. The method initiates a communication link between an external instrument (EI) and an implantable medical device (IMD), established a first connection interval for conveying data packets between the EI and IMD and monitors a connection criteria that includes at least one of a data throughput requirement. A battery indicator or link condition of the communications link is between the IMD and EI. The method further changes from the first connection interval to a second connection interval based on the connection criteria.
    Type: Grant
    Filed: August 21, 2023
    Date of Patent: April 8, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Yongjian Wu, Chao-Wen Young, Jun Yang, Xing Pei, Reza Shahandeh
  • Patent number: 12268886
    Abstract: A computer implemented method and system for monitoring types of capture within a distributed implantable system having a leadless implantable medical device (LIMD) to be implanted entirely within a local chamber of the heart and having a subcutaneous implantable medical device (SIMD) to be located proximate the heart are provided. The method is under control of one or more processors of the SIMD configured with program instructions. The method collects far field (FF) evoked cardiac signals following the pacing pulses delivered by the LIMD for an event and analyzes the FF evoked cardiac signals to identify a type of HIS capture as loss of capture (LOC), selective capture, myocardial tissue-only (MT-only) capture, or a non-selective (NS) capture and records a label for the event based on the type of HIS capture identified.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: April 8, 2025
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Publication number: 20250108221
    Abstract: A dual chamber LP system includes an aLP and a vLP that collectively provide AAI+VVI operation, and selectively transition from the AAI+VVI operation to collectively providing coordinated dual chamber operation (e.g., DDD operation, but not limited thereto), and vice versa. While providing the AAI operation, the aLP performs atrial pacing when an intrinsic atrial event is not detected within a specified AA interval, performs atrial sensing, and inhibits the atrial pacing when the intrinsic atrial event is detected within the specified AA interval. While providing the VVI operation, the vLP performs ventricular pacing when an intrinsic ventricular event is not detected within a specified VV interval, performs ventricular sensing, and inhibits the ventricular pacing when the intrinsic ventricular event is detected within the specified VV interval.
    Type: Application
    Filed: August 29, 2024
    Publication date: April 3, 2025
    Applicant: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Weiqun Yang, Laura L. Rogan, Robert J. Graumann, Joseph James Wiley, IV
  • Publication number: 20250099771
    Abstract: A system includes, or is for use with, an atrial leadless pacemaker (aLP) and a ventricular leadless pacemaker (vLP) configured to communicate with one another and collectively provide DDD operation when an a2v message transmitted by the aLP is successfully received by the vLP and a v2a message transmitted by the vLP is successfully received by the aLP, during a cardiac cycle. The aLP and the vLP are also configured to collectively provide VDD operation, DDI operation or VDI operation at least some times when an a2v message transmitted by the aLP is not successfully received by the vLP, and/or a v2a message transmitted by the vLP is not successfully received by the aLP. One or more processors of the system is/are configured to determine an AV synchrony metric for the period of time, and provide one or more responses based thereon. Related methods are also described.
    Type: Application
    Filed: August 15, 2024
    Publication date: March 27, 2025
    Applicant: Pacesetter, Inc.
    Inventors: Aditya Goil, Nima Badie, Daniel F. Booth
  • Patent number: 12257440
    Abstract: A system and method are provided for managing atrial-ventricular (AV) delay adjustments. An AV interval is measured that corresponds to an interval between an atrial paced (Ap) event or an atrial sensed (As) event and a sensed ventricular (Vs) event. A candidate AV delay is set based on the AV interval and a bundle branch adjustment (BBA) value. A QRS characteristic of interest (COI) is measured while utilizing the candidate AV delay in connection with delivering a pacing therapy. The BBA value is adjusted and the candidate AV delay is reset based on the BBA value as adjusted. A collection of QRS COIs and corresponding candidate AV delays are obtained and one of the candidate AV delays is selected as a BBA AV delay. The pacing therapy is managed, based on the BBA AV delay.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: March 25, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Wenwen Li, Nima Badie, Luke C. McSpadden, Yun Qiao, Avi Fischer, Kyungmoo Ryu
  • Patent number: 12257060
    Abstract: A system and method for determining an arrhythmia risk are provided and include memory to store specific executable instructions and a machine learning (ML) model trained to predict an arrhythmia with a characteristic of interest (COI) that exhibits a non-physiologic behavior. One or more processors are configured to execute the specific executable instructions to obtain CA signals collected by an implantable medical device (IMD), wherein the COI exhibits a physiologic behavior and apply the ML model to the CA signals to identify a risk factor that a patient will experience the arrhythmia at a future point in time even though the COI in the CA signals, exhibits a physiologic behavior.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: March 25, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Kevin Davis, Aditya Goil
  • Publication number: 20250082274
    Abstract: Embodiments reduce burden associated with analyzing EGM segments obtained from an IMD that monitors for arrhythmic episodes. Respective EGM data and respective classification data is obtained for each arrhythmic episode detected by the IMD during a period of time. A representative R-R interval or HR for each of the arrhythmic episodes is determine by the IMD, wherein a manner for determining the representative R-R interval or HR depends on the type of the arrhythmic episode, such that for at least two different types of arrhythmic episodes the manners differ. An external system(ES) obtains data from the IMD, directly or indirectly, and selects arrhythmic episode(s) for which corresponding EGM segments are to be displayed for each type of arrhythmic episode, wherein the selecting is performed based on the representative R-R intervals or HRs determined by the IMD for the arrhythmic episodes. Additional and alternative embodiments are also described herein.
    Type: Application
    Filed: November 26, 2024
    Publication date: March 13, 2025
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Leyla Sabet, Fady Dawoud, Kevin Davis, Christopher Gloschat, Aditya Goil, Mostafa Sadeghi
  • Patent number: 12245877
    Abstract: Computer implemented methods and systems for detecting noise in cardiac activity are provided. The method and system obtain a far field cardiac activity (CA) data set that includes far field CA signals for a series of beats, overlay a segment of the CA signals with a noise search window, and identify turns in the segment of the CA signals. The method and system determine whether the turns exhibit a turn characteristic that exceed a turn characteristic threshold, declare the segment of the CA signals as a noise segment based on the determining operation, shift the noise search window to a next segment of the CA signal and repeat the identifying, determining and declaring operations; and modify the CA signals based on the declaring the noise segments.
    Type: Grant
    Filed: November 6, 2023
    Date of Patent: March 11, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Fujian Qu, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 12245863
    Abstract: Computer implemented methods and systems are provided that comprise, under control of one or more processors of a medical device, where the one or more processors are configured with specific executable instructions. The methods and systems obtain motion data indicative of at least one of a posture or a respiration cycle; obtain cardiac activity (CA) signals for a series of beats; identify whether a characteristic of interest (COI) from at least a first segment of the CA signals exceeds a COI limit; analyze the motion data to determine whether at least one of the posture or respiration cycle at least in part caused the COI to exceed the COI limit. Based on the analyzing operation, the methods and systems automatically adjust a CA sensing parameter utilized by the medical device to detect R-waves in subsequent CA signals; and detect an arrhythmia based on a presence or absence of one or more of the R-waves in at least a second segment of the CA signals.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: March 11, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Donald Hopper, Luke C. McSpadden, Fujian Qu, Gene A Bornzin, Sinny Delacroix
  • Patent number: 12226630
    Abstract: A medical tool includes a rotation mechanism that further includes a warning feature. The warning feature provides an indication when the rotation mechanism has achieved a number of rotations.
    Type: Grant
    Filed: February 21, 2023
    Date of Patent: February 18, 2025
    Assignee: PACESETTER, INC.
    Inventors: Bradley Knippel, Daniel Coyle, Jennifer Heisel, Bernhard Arnar, Brett Hillukka, Tracee Eidenschink, Thomas B. Eby, Paul Paspa, Joseph Ramon Callol
  • Patent number: 12226640
    Abstract: The present disclosure provides systems and methods for optimizing pacing parameters of a cardiac pacing device implanted in a patient. The systems and methods measure a plurality of hemodynamic responses of the patient. Each hemodynamic response is associated with the cardiac pacing device configured with one candidate pacing parameter set of a plurality of candidate pacing parameter sets. Each candidate pacing parameter set is classified as electrically equivalent to a reference pacing parameter set according to a classification criterion. The systems and methods further identify an optimal hemodynamic response from the plurality of hemodynamic responses, and select a final candidate pacing parameter set corresponding to the optimal hemodynamic response.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: February 18, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Cyrille Casset, Louis-Philippe Richer, Craig D. Markovitz, Jan Mangual-Soto
  • Patent number: 12226122
    Abstract: A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: February 18, 2025
    Assignee: PACESETTER, INC.
    Inventors: Alexander Khairkhahan, Alan Klenk, Thomas Blake Eby
  • Patent number: 12226593
    Abstract: A valve bypass tool, and a biostimulator transport system having such a valve bypass tool, is described. The valve bypass tool includes an annular seal to seal against a protective sheath of the biostimulator transport system. The valve bypass tool is slidably mounted on the protective sheath and includes a bypass sheath to insert into an access introducer. The valve bypass tool can lock onto the access introducer by mating a locking tab of the valve bypass tool with a locking groove of the access introducer. The locking tab can have a detent that securely fastens the components to resist decoupling when the biostimulator transport system is advanced through the access introducer into a patient anatomy. Other embodiments are also described and claimed.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: February 18, 2025
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Scott M. Smith
  • Patent number: 12214212
    Abstract: Disclosed herein are implantable medical devices and systems, and methods for used therewith, that selectively perform atrial overdrive pacing while an intrinsic atrial rate of a patient is within a specified range.
    Type: Grant
    Filed: December 11, 2023
    Date of Patent: February 4, 2025
    Assignee: Pacesetter, Inc.
    Inventor: Xing Pei
  • Publication number: 20250032032
    Abstract: Described herein are methods, devices, and systems for identifying false R-R intervals, and false arrhythmia detections, resulting from R-wave undersensing or intermittent AV conduction block. Each of one or more of the R-R intervals is classified as being a false R-R interval in response to a duration the R-R interval being greater than a first specific threshold, and the duration the R-R interval being within a second specified threshold of being an integer multiple of at least X other R-R intervals for which information is obtained, wherein the integer multiple is at least 2, and wherein X is a specified integer that is 1 or greater. When performed for R-R intervals in a window leading up to a detection of a potential arrhythmic episode, results of the classifying can be used to determine whether the potential arrhythmic episode was a false positive detection.
    Type: Application
    Filed: October 17, 2024
    Publication date: January 30, 2025
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Jong Gill
  • Patent number: 12208272
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element that can be locked to a helix mount, is described. The fixation element includes a fastener that engages a keeper of the helix mount. When engaged with the keeper, the fastener locks the fixation element to the helix mount. Accordingly, the fixation element does not move relative to the helix mount when the biostimulator is delivered into a target tissue. Other embodiments are also described and claimed.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: January 28, 2025
    Assignee: PACESETTER, INC.
    Inventor: Craig E. Mar
  • Patent number: 12201846
    Abstract: An implantable medical device includes an electrode and an insulative material secured to the electrode via an adhesive. The electrode includes a metal substrate and a metal coating. The metal substrate includes a connection segment and an active segment along a length of the metal substrate. The metal coating is disposed on an outer surface of the metal substrate along the connection segment and the active segment. The insulative material surrounds the connection segment of the metal substrate without surrounding the active segment, and the adhesive adheres to the metal coating on the connection segment.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: January 21, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Wesley Alleman, Keith Victorine, Tyler Strang, Nicole Cooper, Steve Chantasirivisal, Traci Chang
  • Patent number: 12193708
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Grant
    Filed: October 19, 2023
    Date of Patent: January 14, 2025
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Daniel Coyle, Dale Price, Jennifer Heisel
  • Patent number: 12200606
    Abstract: An implantable medical device (IMD) that includes a transceiver configured to broadcast an advertising data packet that includes a unique identifier, and to receive a scan request data packet from an external device. A memory stores program instructions, and stores an approved device list, and one or more processors are configured to execute the program instructions to identify a device identifier (ID) from the scan request data packet received, apply an advertising filter to determine if the scan request data packet is from an authorized external device based on the device ID and the approved device list, based on the determination by the advertising filter, deny transmission of a scan response data packet from the transceiver when the advertising filter determines that the scan request data packet is from an unauthorized external device, and establish a communication session with an authorized external device independent of the scan request data packet.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: January 14, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Chaowen Young, Yongjian Wu, Jyoti Bhayana, Samir Shah, Reza Shahandeh
  • Patent number: 12193703
    Abstract: A blade for a cutting instrument includes a handle, a body, and at least three cutting edges along the body. The body has first and second sides extending along a longitudinal center axis. The body has a proximal end at the handle and a distal tip remote from the handle. The at least three cutting edges are oriented at corresponding angles with respect to the longitudinal center axis and are asymmetrically distributed with respect to the longitudinal center axis.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: January 14, 2025
    Assignee: Pacesetter, Inc.
    Inventors: Xiangqun Chen, Rodney Hawkins, Adam Evard, Alex Soriano, Ofer Rosenzweig