Patents Assigned to Pacesetter, Inc.
-
Publication number: 20240156387Abstract: Systems and methods described herein improve visibility of features (e.g., P-waves) of a physiologic signal segment (e.g., an EGM or ECG signal segment) to be displayed within a display band having a specified height between an upper and a lower boundary of the display band. The physiologic signal segment is divided into sub-segments, for each of which a sub-segment minimum peak amplitude and maximum peak amplitude are determined. Based thereon, a new minimum peak amplitude and a new maximum peak amplitude are determined and used to determine a new display range. A portion of the physiologic signal segment that is within the new display range is caused to be display, within the display band having the specified height, such that the upper boundary of the display band corresponds to the new maximum peak amplitude, and the lower boundary of the display band corresponds to the new minimum peak amplitude.Type: ApplicationFiled: September 5, 2023Publication date: May 16, 2024Applicant: Pacesetter, Inc.Inventors: Fujian Qu, Praveen Gopalakrishna, Tejpal Singh
-
Publication number: 20240157154Abstract: Described herein are implantable medical devices (IMDs), and methods for use therewith. In certain embodiments, a controller of an IMD controls when a pacing capacitor of the IMD is charged using a first voltage, when the pacing capacitor is being charged using a second voltage, and when the pacing capacitor is discharged to deliver a pacing pulse between anode and cathode electrodes of, or electrically coupled to, the IMD. By selectively charging the pacing capacitor for a portion of a charge duration using the second voltage, that is greater in magnitude than the first voltage that is used for delivering the pacing pulse, a magnitude of a polarization artifact superimposed on an evoked response within a cardiac electrical signal, sensed using a sensing circuit of the IMD, is reduced compared to if the pacing capacitor were instead charged using the first voltage for the entire charge duration.Type: ApplicationFiled: September 29, 2023Publication date: May 16, 2024Applicant: Pacesetter, Inc.Inventors: Gene A. Bornzin, Alexander R. Bornzin
-
Patent number: 11980472Abstract: A system for verifying a candidate pathologic episode of a patient is provided. The system includes an accelerometer configured to be implanted in the patient, the accelerometer configured to obtain accelerometer data along at least one axis. The system also includes a memory configured to store program instructions and one or more processors. When executing the program instructions, the one or more processors are configured to obtain a biological signal and identify a candidate pathologic episode based on the biological signal, analyze the accelerometer data to identify a physical action experienced by the patient, and verify the candidate pathologic episode based on the physical action.Type: GrantFiled: March 5, 2021Date of Patent: May 14, 2024Assignee: Pacesetter, Inc.Inventors: Jong Gill, Kyungmoo Ryu, Fady Dawoud
-
Patent number: 11980763Abstract: A system for validating safety of a medical device in a presence of a magnetic resonance imaging (MRI) field is provided. The system includes a first electric field generating device configured to form first electric field and configured to receive a medical device at least partially within the first electric field, and a second electric field generating device configured to form a second electric field in proximity to the first electric field and configured to receive the medical device at least partially within the second electric field.Type: GrantFiled: December 1, 2021Date of Patent: May 14, 2024Assignee: Pacesetter, Inc.Inventors: Xi Lin Chen, Xiyao Xin, Shiloh Sison, Shi Feng
-
Patent number: 11975208Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.Type: GrantFiled: January 6, 2023Date of Patent: May 7, 2024Assignee: Pacesetter, Inc.Inventors: Jong Gill, Gene Bornzin
-
Patent number: 11969599Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.Type: GrantFiled: June 13, 2022Date of Patent: April 30, 2024Assignee: Pacesetter, Inc.Inventor: Jennifer Rhude
-
Patent number: 11972906Abstract: A method of producing a capacitor electrode includes forming an oxide layer on a foil. The method also includes inducing defects in the oxide layer followed by reforming the oxide layer. The oxide layer is reformed so as to generate a reformed oxide layer that is an aluminum oxide with a boehmite phase and a pseudo-boehmite phase. The amount of the boehmite phase in the reformed oxide layer is greater than the amount of the pseudo-boehmite phase in the reformed oxide layer.Type: GrantFiled: November 16, 2020Date of Patent: April 30, 2024Assignee: Pacesetter, Inc.Inventors: Ralph Jason Hemphill, James Brian Smith
-
Patent number: 11957916Abstract: Implantable medical devices (IMDs), systems, and methods for use therewith are disclosed. One such method is for use by a leadless pacemaker (LP) configured to perform conductive communication with another implantable medical device (IMD). The method includes the LP storing information that specifies when, within a cardiac cycle, the LP and the other IMD implanted in a patient are likely oriented relative to one another such that conductive communication therebetween should be successful. The method also includes the LP sensing a signal indicative of cardiac activity of the patient over a plurality of cardiac cycles, and outputting one or more conductive communication pulses, during a portion of at least one of the cardiac cycles, wherein the portion of the at least one of the cardiac cycles is identified based on the signal that is sensed and the information that is stored.Type: GrantFiled: January 31, 2023Date of Patent: April 16, 2024Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
-
Patent number: 11957919Abstract: An implantable system includes an implantable medical device (IMD) and a non-transvenous lead that is configured to be implanted outside of a heart. The IMD includes an output configured to be connected at least to the lead, a current generator (CG) circuit configured to generate pacing pulses, a switching circuit coupled between the CG circuit and the output, one or more capacitors coupled in parallel with the CG circuit and the switching circuit, and a control circuit coupled to the CG circuit. The control circuit is configured to manage the CG circuit to generate the pacing pulses with a constant current at the output.Type: GrantFiled: June 24, 2021Date of Patent: April 16, 2024Assignee: Pacesetter, Inc.Inventors: Reza Shahandeh, Ninous Davoudi, Frank Lee, David Doudna, Jeffery Crook
-
Publication number: 20240115870Abstract: Disclosed herein are implantable medical devices and systems, and methods for used therewith, that selectively perform atrial overdrive pacing while an intrinsic atrial rate of a patient is within a specified range.Type: ApplicationFiled: December 11, 2023Publication date: April 11, 2024Applicant: Pacesetter, Inc.Inventor: Xing Pei
-
Publication number: 20240115865Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing, characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing.Type: ApplicationFiled: December 14, 2023Publication date: April 11, 2024Applicant: Pacesetter, Inc.Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
-
Publication number: 20240115194Abstract: Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.Type: ApplicationFiled: December 11, 2023Publication date: April 11, 2024Applicant: Pacesetter, Inc.Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
-
Patent number: 11951319Abstract: The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.Type: GrantFiled: August 7, 2018Date of Patent: April 9, 2024Assignee: Pacesetter, Inc.Inventors: Gene A. Bornzin, Xiaoyi Min, Wenwen Li, Stuart Rosenberg, Kyungmoo Ryu, Alexander Bornzin, Leyla Sabet, Shubha Asopa, Xing Pei
-
Patent number: 11938330Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.Type: GrantFiled: July 6, 2020Date of Patent: March 26, 2024Assignee: Pacesetter, Inc.Inventors: Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
-
Patent number: 11931590Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.Type: GrantFiled: May 14, 2021Date of Patent: March 19, 2024Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
-
Patent number: 11931568Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.Type: GrantFiled: February 28, 2022Date of Patent: March 19, 2024Assignee: Pacesetter, Inc.Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
-
Patent number: 11935706Abstract: A capacitor has an anode with one or more active layers that each includes fused particles positioned on a current collector. The current collector includes tunnels that extend from a first face of the current collector to a second face of the current collector.Type: GrantFiled: August 4, 2022Date of Patent: March 19, 2024Assignee: Pacesetter, Inc.Inventor: Xiaofei Jiang
-
Publication number: 20240081734Abstract: Described herein are apparatuses and methods for classifying a patient as being asleep or awake. Such an apparatus can include an accelerometer and a processor. The accelerometer, alone or in combination with the processor, is used to determine an activity level of the patient and a posture of the patient. The processor is configured to classify the patient as being asleep in response to both (i) the posture of the patient being recumbent or reclined for at least a sleep latency duration, and (ii) the activity level of the patient not exceeding an activity threshold for at least the sleep latency duration; and classify the patient as being awake in response to at least one of (iii) the posture of the patient being upright for at least an awake latency duration, or (iv) the activity level of the patient exceeding the activity threshold for at least the awake latency duration.Type: ApplicationFiled: November 14, 2023Publication date: March 14, 2024Applicant: Pacesetter, Inc.Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
-
Patent number: 11925811Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.Type: GrantFiled: April 5, 2021Date of Patent: March 12, 2024Assignee: Pacesetter, Inc.Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
-
Patent number: 11918817Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.Type: GrantFiled: April 5, 2021Date of Patent: March 5, 2024Assignee: Pacesetter, Inc.Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson