Patents Assigned to Pacesetter
  • Publication number: 20220249842
    Abstract: A leadless biostimulator, and an electrical feedthrough assembly for use therewith, are described herein. The leadless biostimulator comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within a housing of the leadless biostimulator, and wherein the electrical feedthrough assembly is configured to be mounted on the housing of the leadless biostimulator.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 11, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Publication number: 20220249849
    Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing in a His intracardiac electrogram (His IEGM), characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing within a His IEGM. Other embodiments of the present technology described herein relate to determining whether atrial capture occurs in response to His bundle pacing (HBP). Still other embodiments of the present technology described herein relate to determining whether AV node capture occurs in response to HBP.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
  • Publication number: 20220249850
    Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing in a His intracardiac electrogram (His IEGM), characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing within a His IEGM. Other embodiments of the present technology described herein relate to determining whether atrial capture occurs in response to His bundle pacing (HBP). Still other embodiments of the present technology described herein relate to determining whether AV node capture occurs in response to HBP.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
  • Patent number: 11400297
    Abstract: Methods, devices and program products are provided for managing a pacing therapy using an implantable medical device (IMD). The methods, devices and program products sense cardiac activity (CA) signals at electrodes located proximate to multiple left ventricular (LV) sites and a right ventricular (RV) site of the heart and utilizing one or more processors to measure activation times between the multiple LV sites and the RV site based on the CA signals. The processors program an order of activation for the multiple LV sites based on the activation times and identify an RV activation time and a septum activation time based on the CA signals. The processors calculate a septum to RV activation time (SRAT) based on the RV and septum activation times and program an AVSRAT delay based on the SRAT.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: August 2, 2022
    Assignee: PACESETTER, INC.
    Inventors: David Muller, Raffaele Corbisiero
  • Patent number: 11400295
    Abstract: Systems and methods for His bundle pacing and classifying response to pacing impulses include applying, using a pulse generator, an impulse through a stimulating electrode to induce a response from a patient heart. A response to the impulse is measured using at least one sensing electrode and time-domain based characteristics of the response are analyzed to determine whether His bundle capture has occurred and, if so, what type of capture has occurred.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: August 2, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Yun Qiao, Wenwen Li, Jan O. Mangual-Soto, Luke C. McSpadden
  • Patent number: 11382663
    Abstract: A retrieval system for a biostimulator, such as a leadless cardiac pacemaker, is described. The biostimulator retrieval system includes a docking cap rotatably coupled to an outer catheter by a bearing. A torque shaft extends through the outer catheter and attaches to the docking cap to transmit torque to the docking cap to cause rotation of the docking cap relative to the outer catheter. The rotating docking cap can transmit torque to an attachment feature of a biostimulator received within the docking cap. The attachment feature can be captured by a snare that extends through the torque shaft. A cincher tube extends through the torque shaft around the snare, and advances over the snare independently from the torque shaft that is attached to the docking cap, to cinch the snare onto the attachment feature. Other embodiments are also described and claimed.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: July 12, 2022
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Daniel Coyle, Adam Weber
  • Patent number: 11383089
    Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 12, 2022
    Assignee: Pacesetter, Inc.
    Inventor: Jennifer Rhude
  • Publication number: 20220212019
    Abstract: Described herein are external devices, and methods for use therewith, that are configured to communicate with one or more implantable medical devices (IMDs) implanted within a patient using conductive communication, wherein the external device includes or is communicatively coupled to at least three external electrodes that are in contact with the patient. Certain such methods involve the external device identifying, for each IMD, of the plurality of IMDs, which one of the plurality of communication vectors is a preferred communication vector for communicating with the IMD, based on respective indicators of conductive communication quality that are determined for the plurality of communication vectors. Certain embodiments involve determining when there should be a reassessment of which one of the plurality of communication vectors is the preferred communication vector for communicating with an IMD, and in response thereto, identifying an updated preferred communication vector for communicating with the IMD.
    Type: Application
    Filed: March 22, 2022
    Publication date: July 7, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Frank Lee, Thanh Tieu, Robert Williams, Suyashree Bhonsle, Jinto Zacharias, Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
  • Patent number: 11369305
    Abstract: Computer implemented methods, devices and systems for monitoring a trend in heart failure (HF) progression are provided. The method comprises sensing left ventricular (LV) activation events at multiple LV sensing sites along a multi-electrode LV lead. The activation events are generated in response to an intrinsic or paced ventricular event. The method implements program instructions on one or more processors for automatically determining a conduction pattern (CP) across the LV sensing sites based on the LV activation events, identifying morphologies (MP) for cardiac signals associated with the LV activation events and repeating the sensing, determining and identifying operations, at select intervals, to build a CP collection and an MP collection. The method calculates an HF trend based on the CP collection and MP collection and classifies a patient condition based on the HF trend to form an HF assessment.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 28, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Louis-Philippe Richer, Jong Gill
  • Patent number: 11369414
    Abstract: A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 28, 2022
    Assignee: PACESETTER, INC.
    Inventors: Alexander Khairkhahan, Alan Klenk, Thomas Blake Eby
  • Patent number: 11364364
    Abstract: A valve bypass tool, and a biostimulator transport system having such a valve bypass tool, is described. The valve bypass tool includes an annular seal to seal against a protective sheath of the biostimulator transport system. The valve bypass tool is slidably mounted on the protective sheath and includes a bypass sheath to insert into an access introducer. The valve bypass tool can lock onto the access introducer by mating a locking tab of the valve bypass tool with a locking groove of the access introducer. The locking tab can have a decent that securely fastens the components to resist decoupling when the biostimulator transport system is advanced through the access introducer into a patient anatomy. Other embodiments are also described and claimed.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: June 21, 2022
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Scott M. Smith
  • Publication number: 20220184404
    Abstract: Methods and devices for managing establishment of a communications link between an external instrument (EI) and an implantable medical device (IMD) are provided. The methods and devices comprise storing, in memory in at least one of the IMD or the EI an advertising schedule defining a pattern for advertisement notices. The advertisement notices are distributed un-evenly and separated by unequal advertisement intervals. The method transmits, from a transmitter in at least one of the IMD or the EI the advertisement notices. The advertisement notices are distributed as defined by the advertising schedule. The method establishes a communication session between the IMD and the EI.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Yongjian Wu, Samir Shah, Heidi Hellman, Reza Shahandeh, Tejpal Singh, Youjing Huang, Chao-Wen Young
  • Patent number: 11362316
    Abstract: Batteries having hybrid electrode configurations are disclosed herein. In one embodiment, a battery comprises an electrode assembly. The electrode assembly comprises a first cathode including a first cathode active material, a second cathode including a second cathode active material different from the first cathode active material, a first anode disposed between the first cathode and the second cathode, a first separator interposed between the first cathode and the first anode, and a second separator interposed between the second cathode and the first anode.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: June 14, 2022
    Assignee: Pacesetter, Inc.
    Inventor: Xiaofei Jiang
  • Patent number: 11357414
    Abstract: A system for monitoring blood pressure includes an implantable medical device (IMD) and an external device (ED). The IMD senses an electrogram (EGM) signal, identifies a feature thereof indicative of a ventricular depolarization, and transmits a conductive communication signal through patient tissue indicating when the ventricular depolarization occurred. The ED is worn against skin and configured to receive the conductive communication signal. The ED is also configured to sense a plethysmography (PG) signal and identify a feature thereof indicative of when a pulse wave responsive to the ventricular depolarization reaches a region of the patient adjacent the ED, and determine a delay time (TD) indicative of how long it takes the pulse wave to travel from the patient's heart to the region of the patient adjacent to the ED. The TD is a surrogate of the patient's blood pressure and useful for monitoring the patient's blood pressure and/or changes therein.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 14, 2022
    Assignee: Pacesetter, Inc.
    Inventor: Dean P. Andersen
  • Patent number: 11357545
    Abstract: A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 14, 2022
    Assignee: PACESETTER, INC.
    Inventors: Alexander Khairkhahan, Alan Klenk, Thomas Blake Eby
  • Patent number: 11351384
    Abstract: An implantable medical device includes a header body and a septum assembly. The header body includes a first welding surface and a septum bore extending inwardly from an outer surface to an inner cavity. The septum assembly is at least partially disposed within the septum bore of the header assembly and includes a septum configured to allow insertion of a tool through the septum into the inner cavity and to otherwise provide a seal. The septum assembly further includes a retainer within which at least a portion of the septum is retained. The retainer includes a welding feature coupled to the retainer body, the welding feature providing a second welding surface. The retainer is coupled to the header body by welding the first welding surface to the second welding surface.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: June 7, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Asghar Dadashian, Christopher R. Jenney
  • Patent number: 11342128
    Abstract: The electrolytic capacitor has a conductive sheet with a central portion defined by a peripheral edge, a first tail extending out from the peripheral edge in a first direction, and a second tail extending out from the peripheral edge in a second direction. The second direction is opposite the first direction. The first tail and the second tail each have a free end with a first recess at the free.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 24, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Troy McCurry, Peter J. Fernstrom, Ralph Jason Hemphill
  • Patent number: 11338146
    Abstract: A system is provided for controlling a left univentricular (LUV) pacing therapy using an implantable medical device (IMD). The system also includes one or more processors configured to determine an atrial-ventricular (AV) conduction interval (ARRV) between the A site and a first RV sensed event at the RV site, determine an inter-ventricular (VV) conduction interval (RLV-RRV) between a paced event at the LV site and a second RV sensed event at the RV site, and set a ventricular refractory period (VRP) based on at least one of the AV conduction interval or the VV conduction interval and a predetermined offset. The one or more processors are also configured to blank signals over the RV sensing channel during the VRP.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: May 24, 2022
    Assignee: Pacesetter, Inc.
    Inventor: Jan O. Mangual-Soto
  • Patent number: 11331496
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including an electrical feedthrough assembly mounted on a housing, is described. An electronics compartment of the housing can contain an electronics assembly to generate a pacing impulse, and the electrical feedthrough assembly can include an electrode tip to deliver the pacing impulse to a target tissue. A monolithically formed electrode body can have a pin integrated with a cup. The pin can be electrically connected to the electronics assembly, and the cup can be electrically connected to the electrode tip. Accordingly, the biostimulator can transmit the pacing impulse through the monolithic pin and cup to the target tissue. The cup can hold a filler having a therapeutic agent for delivery to the target tissue and may include retention elements for maintaining the filler at a predetermined location within the cup.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 17, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11331507
    Abstract: Implantable cardioverter device (ICD) systems capable of delivering a multi-vector defibrillation shock, and methods for use therewith, are described herein. Such an ICD system can include a defibrillation charge capacitor, a charge circuit, first, second, and third electrodes, switches, a controller, and first, second and third filters. The defibrillation charge capacitor is coupled between a first voltage rail and a second voltage rail. The first filter is coupled between the first and second electrodes, and the second filter is coupled between the second and third electrodes, so that the first and second filters can shunt EMI signals. The third filter is coupled between the first and third electrodes and configured to provide for electrical symmetry when the first, second, and third electrodes are used to deliver a multi-vector defibrillation shock. Such filters, which can be implemented using capacitors, can be used to make the ICD system MRI compatible.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: May 17, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Jeffery Crook, Eiji Shirai, Arpitha Ravishankar