Patents Assigned to Pacesetter
  • Publication number: 20210376306
    Abstract: A method of fabricating a battery electrode includes forming a mixture including an electrode material and a binder; forming an electrode blank from the mixture; heating the electrode blank at a predetermined temperature for a predetermined time to form an annealed electrode blank; and laminating the annealed electrode blank to a current collector. The current collector may include a conductive carbon coating. In such event, the method may further include heating the current collector at a selected temperature for a selected time prior to laminating the annealed electrode blank to the current collector.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventor: Xiaofei Jiang
  • Publication number: 20210369176
    Abstract: Described herein are methods, devices, and systems for identifying false R-R intervals, and false arrhythmia detections, resulting from R-wave undersensing or intermittent AV conduction block. Each of one or more of the R-R intervals is classified as being a false R-R interval in response to a duration the R-R interval being greater than a first specific threshold, and the duration the R-R interval being within a second specified threshold of being an integer multiple of at least X other R-R intervals for which information is obtained, wherein the integer multiple is at least 2, and wherein X is a specified integer that is 1 or greater. When performed for R-R intervals in a window leading up to a detection of a potential arrhythmic episode, results of the classifying can be used to determine whether the potential arrhythmic episode was a false positive detection.
    Type: Application
    Filed: May 13, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Jong Gill
  • Publication number: 20210369175
    Abstract: Described herein are methods, devices, and systems for improving R-wave detection sensitivity and positive predictive value, and for improving arrhythmia detection accuracy. Certain embodiments involve determining whether to classify a potential R-wave as a false R-wave (or more specifically, an over-sensed P-wave) by determining a measure of magnitude of a first portion of the signal corresponding to a first window following the potential R-wave, determining the measure of magnitude of a second portion of the signal corresponding to a second window following the first window, and classifying the potential R-wave as a false R-wave if the measure of magnitude of the second portion of the signal is at least a specified extent larger (e.g., at least 3 times larger) than the measure of magnitude of the first portion of the signal. Certain embodiments also involve adjusting an R-wave marker for a potential R-wave that is classified as a false R-wave.
    Type: Application
    Filed: April 6, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Jong Gill
  • Publication number: 20210370078
    Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.
    Type: Application
    Filed: May 14, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
  • Publication number: 20210369191
    Abstract: Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Variations in one or more morphological or temporal features of the signal over several cardiac cycles are determined and used to detect a potential apnea event in a measurement period. Checks can then be made for a number of factors which could result in a false detection of an apnea event and if such factors are not present, an apnea event is recorded. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.
    Type: Application
    Filed: April 20, 2021
    Publication date: December 2, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
  • Patent number: 11189915
    Abstract: Disclosed herein is an implantable electronic device including a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly includes an antenna including a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly includes one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11185948
    Abstract: A capacitor and methods of processing an anode metal foil are presented. The capacitor includes a housing, one or more anodes disposed within the housing, one or more cathodes disposed within the housing, one or more separators disposed between an adjacent anode and cathode, and an electrolyte disposed around the one or more anodes, one or more cathodes, and one or more separators within the housing. The one or more anodes each include a metal foil that includes a first plurality of tunnels through a thickness of the metal foil in a first ordered arrangement, the first ordered arrangement being a close packed hexagonal array arrangement, and having a first diameter, and a second plurality of tunnels through the thickness of the metal foil having a second ordered arrangement and a second diameter greater than the first diameter.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: November 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, David R. Bowen, Kurt J. Erickson, Peter Fernstrom
  • Patent number: 11185704
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: November 30, 2021
    Assignee: PACESETTER, INC.
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Publication number: 20210361945
    Abstract: Described herein are implantable medical systems, and methods for use therewith, that provide a temperature based rate response for a patient within which the implantable medical system is implanted. Such a method can include sensing a blood temperature signal indicative of a core body temperature of the patient, and producing a relative temperature signal based on the blood temperature signal. The method can further include producing a moving baseline temperature signal based on the relative temperature signal, producing a proportional response signal based on the relative temperature signal and the moving baseline temperature signal, and producing a sensor indicated rate response signal based on the proportional response signal and a base rate. The sensor indicated rate response signal can also be based on a dip response signal and/or a slope response signal. Additionally, a pacing rate is controlled based on the sensor indicated rate response signal.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Applicant: Pacesetter, Inc.
    Inventor: Donald Chin
  • Publication number: 20210361954
    Abstract: Cardiac pacing is performed using leadless pacemakers (LPs). An AV delay is determined based on a P-wave duration. When pacing occurs during cardiac cycles starting with intrinsic atrial events, the AV delay is set to the P-wave duration plus a first offset if the P-wave duration is greater than a first threshold duration, and the AV delay is set to the P-wave duration plus a second offset that is greater than the first offset, if the P-wave duration is less than the first threshold duration. When pacing occurs during cardiac cycles starting with paced atrial events, the AV delay is set to the P-wave duration plus a third offset, if the P-wave duration is greater than a second threshold duration, or is set to the P-wave duration plus a fourth offset that is greater than the third offset, if the P-wave duration is less than the second threshold duration.
    Type: Application
    Filed: August 4, 2021
    Publication date: November 25, 2021
    Applicant: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Publication number: 20210346707
    Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes, during each of a plurality of message alert periods during which a communication capability of the IMD is enabled, determining whether a valid message is detected. In response to determining that no valid message was detected during a message alert period, the communication capability of the IMD is temporarily disable for a disable period. A length of the disable period may be increased in response to no valid message being detected during two consecutive message alert periods. A length of the disable period may be dependent on an operational mode of the IMD, such that the length of the disable period differs for different operational modes. The IMD may also enter a noise state, and remain in the noise state until the IMD receives a specified number of valid messages.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Benjamin T. Persson, Suresh Gurunathan
  • Publication number: 20210338136
    Abstract: Described herein are methods, devices, and systems that improve arrhythmia episode detection specificity, such as, but not limited to, atrial fibrillation (AF) episode detection specificity. Such a method can include obtaining an ordered list of R-R intervals within a window leading up to a detection of a potential arrhythmia episode, determining a measure of a dominant repeated R-R interval pattern within the window, and comparing the measure of the dominant repeated R-R interval pattern to a pattern threshold. If the measure of the dominant repeated R-R interval pattern is below the pattern threshold, that is indicative of a regularly irregular pattern being present, and there is a determination that the detection of the potential arrhythmia episode does not correspond to an actual arrhythmia episode. Such embodiments can beneficially be used to significantly reduce the number of false positive arrhythmia detections.
    Type: Application
    Filed: April 9, 2021
    Publication date: November 4, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Nima Badie, Fujian Qu, Jong Gill
  • Publication number: 20210330986
    Abstract: Embodiments described herein relate to implantable medical devices (IMDs) and methods for use therewith. Such a method includes using an accelerometer of an IMD (e.g., a leadless pacemaker) to produce one or more accelerometer outputs indicative of the orientation of the IMD. The method can also include controlling communication pulse parameter(s) of one or more communication pulses (produced by pulse generator(s)) based on accelerator output(s) indicative of the orientation of the IMD. The communication pulse parameter(s) that is/are controlled can be, e.g., communication pulse amplitude, communication pulse width, communication pulse timing, and/or communication pulse morphology. Such embodiments can be used to improve conductive communications between IMDs whose orientation relative to one another may change over time, e.g., due to changes in posture and/or due to cardiac motion over a cardiac cycle.
    Type: Application
    Filed: July 8, 2021
    Publication date: October 28, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
  • Patent number: 11154719
    Abstract: A method and device for dynamic device based AV delay adjustment are provided. The method provides electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors, in an implantable medical device (IMD), for detecting an atrial paced (Ap) event or atrial sensed (As) event. The method determines a measured AV interval corresponding to an interval between the Ap event or the As event and a ventricular sensed event and calculates a percentage-based (PB) offset based on the measured AV interval. The method automatically dynamically adjusting an AV delay, utilized by the IMD, based on the measured AV interval and the PB offset and manages a pacing therapy, utilized by the IMD, based on the AV delay after the adjusting operation.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Jan O. Mangual-Soto, Luke C. McSpadden, Aditya Goil, Kyungmoo Ryu
  • Patent number: 11147980
    Abstract: A method and system for managing an implantable medical device (IMD) based on left ventricular hypertrophy (LVH) are provided. The method collects cardiac activity (CA) signals from one or more implantable electrodes at corresponding sensing sites. The method utilizes one or more processors to perform identifying a characteristic of interest from the CA signals, analyzing the characteristic of interest from the CA signals to identify an LVH state indicative of at least one of an occurrence or degree of LVH experienced by the patient, calculating a DFT expectation based on the LVH state and determining, based on the DFT expectation, at least one of i) a defibrillation shock parameter or ii) a maximum energy capacity of the IMD for implant.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: October 19, 2021
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Patent number: 11141597
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: October 12, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Publication number: 20210308471
    Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 7, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
  • Publication number: 20210308470
    Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 7, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
  • Publication number: 20210299458
    Abstract: An implantable medical device includes a header body and a septum assembly. The header body includes a first welding surface and a septum bore extending inwardly from an outer surface to an inner cavity. The septum assembly is at least partially disposed within the septum bore of the header assembly and includes a septum configured to allow insertion of a tool through the septum into the inner cavity and to otherwise provide a seal. The septum assembly further includes a retainer within which at least a portion of the septum is retained. The retainer includes a welding feature coupled to the retainer body, the welding feature providing a second welding surface. The retainer is coupled to the header body by welding the first welding surface to the second welding surface.
    Type: Application
    Filed: March 31, 2020
    Publication date: September 30, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Asghar Dadashian, Christopher R. Jenney
  • Patent number: 11129993
    Abstract: A computer implemented method and system for detecting arrhythmias in cardiac activity are provided. The method is under control of one or more processors configured with specific executable instructions. The method obtains cardiac activity (CA) signals at the electrodes of an implantable medical device (IMD) in connection multiple cardiac beats and with different IMD orientations relative to gravitational force. The method obtains acceleration signatures at a sensor of the IMD that are indicative of heart sounds generated during the cardiac beats. The method obtains device location information at the IMD, with respect to the gravitational force during the cardiac beats. The method groups the acceleration signatures associated with the first and second set of cardiac beats into the corresponding one of first and second posture bins based on the device location information.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: September 28, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Thanh Tieu, Gene A. Bornzin, Stuart Rosenberg