Patents Assigned to Pacesetters, Inc.
  • Patent number: 11972906
    Abstract: A method of producing a capacitor electrode includes forming an oxide layer on a foil. The method also includes inducing defects in the oxide layer followed by reforming the oxide layer. The oxide layer is reformed so as to generate a reformed oxide layer that is an aluminum oxide with a boehmite phase and a pseudo-boehmite phase. The amount of the boehmite phase in the reformed oxide layer is greater than the amount of the pseudo-boehmite phase in the reformed oxide layer.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 30, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Ralph Jason Hemphill, James Brian Smith
  • Patent number: 11969599
    Abstract: Methods, devices and program products are provided for under control of one or more processors within an implantable medical device (IMD). Sensing near field (NF) and far field (FF) signals are between first and second combinations of electrodes coupled to the IMD. The method applies an arrhythmia detection algorithm to the NF signals for identifying events within the NF signal and designates events marker based thereon and monitors the event markers to detect a candidate arrhythmia condition in the NF signals. The candidate under-detected condition comprises at least one of an under-detected arrhythmia or over-sensing. In response to detection of the candidate arrhythmia condition, the method analyzes the FF signals for a presence of an under-detected arrhythmia indicator. The method delivers an arrhythmia therapy based on the presence of the under-detected arrhythmia indicator in the FF signals and the candidate under-detected arrhythmia condition in the NF signals.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 30, 2024
    Assignee: Pacesetter, Inc.
    Inventor: Jennifer Rhude
  • Patent number: 11957916
    Abstract: Implantable medical devices (IMDs), systems, and methods for use therewith are disclosed. One such method is for use by a leadless pacemaker (LP) configured to perform conductive communication with another implantable medical device (IMD). The method includes the LP storing information that specifies when, within a cardiac cycle, the LP and the other IMD implanted in a patient are likely oriented relative to one another such that conductive communication therebetween should be successful. The method also includes the LP sensing a signal indicative of cardiac activity of the patient over a plurality of cardiac cycles, and outputting one or more conductive communication pulses, during a portion of at least one of the cardiac cycles, wherein the portion of the at least one of the cardiac cycles is identified based on the signal that is sensed and the information that is stored.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: April 16, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, David Ligon, Weiqun Yang, Shawn Chen, Matthew G. Fishler
  • Patent number: 11957921
    Abstract: Disclosed herein is a delivery system for delivering a leadless pacemaker. The delivery system may include a catheter, which may be a guide catheter. The catheter includes a distal end, a proximal end opposite the distal end, a lumen extending between the distal end and the proximal end, and a locking hub operably coupled to the proximal end. The locking hub includes a lumen segment of the lumen. In one implementation, self-biasing of the lumen segment places the lumen segment out of alignment with a rest of the lumen. Deflecting the lumen segment against the self-biasing of the lumen segment places the lumen segment in coaxial alignment with the rest of the lumen. In another implementation, self-biasing of the lumen segment reduces an inner diameter of the lumen segment and actuation of the locking hub expands the inner diameter.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: April 16, 2024
    Assignee: PACESETTER, INC.
    Inventors: Brett Hillukka, Thomas B. Eby, Christopher Alan Hubbard, Bernhard Arnar, Bradley Knippel, Jeremiah Blue, Jennifer Heisel, Rebecca Stufft, Adam Weber
  • Patent number: 11957919
    Abstract: An implantable system includes an implantable medical device (IMD) and a non-transvenous lead that is configured to be implanted outside of a heart. The IMD includes an output configured to be connected at least to the lead, a current generator (CG) circuit configured to generate pacing pulses, a switching circuit coupled between the CG circuit and the output, one or more capacitors coupled in parallel with the CG circuit and the switching circuit, and a control circuit coupled to the CG circuit. The control circuit is configured to manage the CG circuit to generate the pacing pulses with a constant current at the output.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: April 16, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Reza Shahandeh, Ninous Davoudi, Frank Lee, David Doudna, Jeffery Crook
  • Patent number: 11957917
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, having a flexible circuit assembly, is described. The flexible circuit assembly is contained within an electronics compartment between a battery, a housing, and a header assembly of the biostimulator. The flexible circuit assembly includes a flexible substrate that folds into a stacked configuration in which an electrical connector and an electronic component of the flexible circuit assembly are enfolded by the flexible substrate. An aperture is located in a fold region of the flexible substrate to allow a feedthrough pin of the header assembly to pass through the folded structure into electrical contact with the electrical connector. The electronic component can be a processor to control delivery of a pacing impulse through the feedthrough pin to a pacing tip. Other embodiments are also described and claimed.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: April 16, 2024
    Assignee: PACESETTER, INC.
    Inventors: Wade Keller, Thomas B. Eby, Sean McKenna, Brett C. Villavicencio
  • Publication number: 20240115865
    Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing, characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 11, 2024
    Applicant: Pacesetter, Inc.
    Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
  • Publication number: 20240115870
    Abstract: Disclosed herein are implantable medical devices and systems, and methods for used therewith, that selectively perform atrial overdrive pacing while an intrinsic atrial rate of a patient is within a specified range.
    Type: Application
    Filed: December 11, 2023
    Publication date: April 11, 2024
    Applicant: Pacesetter, Inc.
    Inventor: Xing Pei
  • Publication number: 20240115194
    Abstract: Described herein are methods, devices, and systems that use electrogram (EGM) or electrocardiogram (ECG) data for sleep apnea detection. An apparatus and method detect potential apnea events (an apnea or hypopnea event) using a signal indicative of cardiac electrical activity of a patient's heart, such as an EGM or ECG. Described herein are also methods, devices, and systems for classifying a patient as being asleep or awake, which can be used to selectively enable and disable sleep apnea detection monitoring, as well as in other manners.
    Type: Application
    Filed: December 11, 2023
    Publication date: April 11, 2024
    Applicant: Pacesetter, Inc.
    Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
  • Patent number: 11951319
    Abstract: The present disclosure provides systems and methods for applying anti-tachycardia pacing (ATP) using subcutaneous implantable cardioverter-defibrillators (SICDs). An SICD implantable in a subject includes a case including a controller, and at least one conductive lead extending from the case. The at least one conductive lead includes a plurality of coil electrodes, wherein the SICD is configured, via the controller, to apply anti-tachycardia pacing (ATP) to the subject using the at least one conductive lead.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 9, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Xiaoyi Min, Wenwen Li, Stuart Rosenberg, Kyungmoo Ryu, Alexander Bornzin, Leyla Sabet, Shubha Asopa, Xing Pei
  • Patent number: 11938330
    Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: March 26, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
  • Patent number: 11935706
    Abstract: A capacitor has an anode with one or more active layers that each includes fused particles positioned on a current collector. The current collector includes tunnels that extend from a first face of the current collector to a second face of the current collector.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventor: Xiaofei Jiang
  • Patent number: 11931590
    Abstract: Described herein are methods for use with an implantable system including at least an atrial leadless pacemaker (aLP). Also described herein are specific implementations of an aLP, as well as implantable systems including an aLP. In certain embodiments, the aLP senses a signal from which cardiac activity associated with a ventricular chamber can be detected by the aLP itself based on feature(s) of the sensed signal. The aLP monitors the sensed signal for an intrinsic or paced ventricular activation within a ventricular event monitor window. In response to the aLP detecting an intrinsic or paced ventricular activation itself from the sensed signal within the ventricular event monitor window, the aLP resets an atrial escape interval timer that is used by the aLP to time delivery of an atrial pacing pulse if an intrinsic atrial activation is not detected within an atrial escape interval.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Weiqun Yang, Benjamin T. Persson, Nima Badie, Kyungmoo Ryu, Gabriel Mouchawar
  • Patent number: 11931568
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Patent number: 11931587
    Abstract: A system is provided that includes a first electrode configured to be located within a septal wall, and a second electrode configured to be located outside of the septal wall. The system also includes an impedance circuit configured to measure impedance along an impedance monitoring (IM) vector between the first and second electrodes. One or more processors are also provided that are configured to obtain impedance data indicative of an impedance along the IM vector with the first electrode located at different depths within the septal wall, the impedance data including a set of data values associated with different depths of the first electrode within the septal wall. The one or more processors are also configured to determine when the first electrode is located at a target depth within the septal wall based on the impedance data.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: March 19, 2024
    Assignee: PACESETTER, INC.
    Inventors: Jan O. Mangual-Soto, Wenwen Li, Yun Qiao, Kyungmoo Ryu
  • Publication number: 20240081734
    Abstract: Described herein are apparatuses and methods for classifying a patient as being asleep or awake. Such an apparatus can include an accelerometer and a processor. The accelerometer, alone or in combination with the processor, is used to determine an activity level of the patient and a posture of the patient. The processor is configured to classify the patient as being asleep in response to both (i) the posture of the patient being recumbent or reclined for at least a sleep latency duration, and (ii) the activity level of the patient not exceeding an activity threshold for at least the sleep latency duration; and classify the patient as being awake in response to at least one of (iii) the posture of the patient being upright for at least an awake latency duration, or (iv) the activity level of the patient exceeding the activity threshold for at least the awake latency duration.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Applicant: Pacesetter, Inc.
    Inventors: Jong Gill, Prakrit Shrestha, Kyungmoo Ryu
  • Patent number: 11925811
    Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 12, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
  • Patent number: 11918820
    Abstract: A leadless biostimulator, such as a leadless cardiac pacemaker, having a header assembly that includes overmolded components, is described. The header assembly includes a helix mount overmolded on a flange of an electrical feedthrough assembly. A fixation element is mounted on the helix mount. The overmolded helix mount fills a recess in an outer surface of the flange to robustly join the header assembly components. The electrical feedthrough assembly includes an electrode contained within the flange to deliver electrical impulses to a target anatomy, and an insulator that separates the electrode from the flange. The overmolded helix mount can conform or adhere to the outer surfaces of the flange and the insulator to electrically isolate the electrode from the flange. Other embodiments are also described and claimed.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: March 5, 2024
    Assignee: PACESETTER, INC.
    Inventors: Brett C. Villavicencio, Gintare Kerezyte, Wesley Alleman, Kavous Sahabi
  • Patent number: 11918817
    Abstract: Described herein are methods, devices, and systems for providing an implantable leadless pacemaker (LP) with a remote follow-up capability whereby the LP can provide diagnostic information to an external device that is incapable of programming the LP, wherein the LP includes two or more implantable electrodes used to output both pacing pulses and conductive communication pulses. Such a method can include the LP monitoring for a presence of one or more notification conditions associated with the LP and/or associated with a patient within which the LP is implanted, and the LP periodically outputting an advertisement sequence of pulses, using at least implantable electrodes of the LP, irrespective of whether the LP recognizes the presence of at least one notification condition. The method can also include the LP recognizing the presence of at least one notification condition, and based thereon, the LP also outputting a notification sequence of pulses.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: March 5, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Suresh Gurunathan, Benjamin T. Persson
  • Publication number: 20240065637
    Abstract: A medical data and diagnostics management system for processing classified electrogram (EGM) datasets includes a server system that receives transmissions of classified EGM datasets, each corresponding to an arrhythmic episode detected by an implantable medical device (IMD), and applies a machine-learning model to each classified EGM dataset, thereby determining confidence indicator(s) relating to the IMD classification for each arrhythmic episode. Based upon the confidence indicator(s), the server system generates a set of machine-adjudicated EGM datasets, assigns a ranking score to each machine-adjudicated EGM dataset, and selects for display (for clinical analysis) a subset of the machine-adjudicated EGM datasets based upon their ranking scores. The machine-adjudicated EGM datasets are also stored in a database and further processed to generate diagnostic information and/or diagnostic alerts relating to the arrhythmic episodes detected by the IMD over time.
    Type: Application
    Filed: July 31, 2023
    Publication date: February 29, 2024
    Applicant: Pacesetter, Inc.
    Inventors: Aditya Goil, Kevin Davis, Elnaz Lashgari, Gabriel Mouchawar