Patents Assigned to Pacesetters, Inc.
  • Patent number: 11763997
    Abstract: A method is provided for manufacturing an electrolytic capacitor for an implantable cardioverter defibrillator. The method includes forming an ester material by adding at least one acid to a glycol, and quenching the ester material for a determined period. The method also includes adding an ammonium based material to the ester material after the ester material is quenched, and adding an additional acid after adding the ammonium based material to form an electrolytic material for the electrolytic capacitor.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 19, 2023
    Assignee: Pacesetter, Inc.
    Inventors: R. Jason Hemphill, A. Corina Geiculescu
  • Patent number: 11759234
    Abstract: A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: September 19, 2023
    Assignee: PACESETTER, INC.
    Inventors: Alexander Khairkhahan, Alan Klenk, Thomas Blake Eby
  • Patent number: 11759646
    Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 19, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
  • Patent number: 11759623
    Abstract: Techniques for calibrating a low frequency (LF) clock of an IMD are disclosed, wherein the IMD also includes a high frequency (HF) clock. This includes determining an average, or a surrogate thereof, of how many HF clock cycles of a HF clock signal (produced by the HF clock) occur per LF clock cycle of a predetermined number N of LF clock cycles of the LF clock signal (produced by the LF clock), wherein N is an integer that is at least 2. This also includes comparing the average or a surrogate thereof to a corresponding target value that the average or the surrogate thereof would be equal to if the frequency of the LF clock signal equaled a target frequency for the LF clock, wherein the corresponding target value need not be an integer. The LF clock is calibrated by adjusting the frequency thereof based on results of the comparing.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: September 19, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Dean Andersen, Eiji Shirai
  • Publication number: 20230285757
    Abstract: A leadless biostimulator has a housing including an electronics compartment, an electronics assembly mounted in the electronics compartment, a proximal electrode that disposed on and/or integrated into the housing, and an electrical feedthrough assembly. The electrical feedthrough assembly includes a distal electrode and a flange. The flange is mounted on the housing. The distal electrode is electrically isolated from the flange by an insulator and configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A mount is mounted on the flange and thereby mounted on the electrical feedthrough assembly. A fixation element is mounted on the mount and configured to facilitate fixation of the leadless biostimulator to tissue of a patient.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11745018
    Abstract: A method and device for dynamic device based AV delay adjustment is provided. The method comprises electrodes that are configured to be located proximate to an atrial (A) site and a right ventricular (RV) site. The method utilizes one or more processors for detecting an atrial paced (Ap) event or atrial sensed (As) event, and measures an AV interval corresponding to an interval between the Ap event or the As event and a sensed ventricular (Vs) event. The AV interval is associated with a current heart rate (HR). The method automatically dynamically adjusts a first AV delay based directly on the measured AV interval, identifies a scale factor associated with the current HR, calculates a second AV delay by scaling the first AV delay based on the scale factor and manages a pacing therapy, utilized by the IMD, based on the first and second AV delays.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 5, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Nima Badie, Carin Folman, Jennifer Rhude, Aditya Goil
  • Patent number: 11744613
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: September 5, 2023
    Assignee: PACESETTER, INC.
    Inventors: Scott Kerns, Daniel Coyle
  • Patent number: 11733311
    Abstract: A method of screening a battery for failure mechanisms is provided. The method may include activating an electrochemical cell. Within 5 minutes to two hours of activating the cell, the open circuit voltage of the cell is measured over a period of time to determine a voltage versus time function. The cell is then screened for the presence of a failure mechanism by checking the voltage versus time function for a failure criteria.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Steven Davis, Xiaofei Jiang, Joseph Beauvais
  • Patent number: 11730441
    Abstract: Methods and implantable medical devices (IMDs) are provided for monitoring a cardiac function of a heart. A heart sound sensor is configured to sense heart sound signals of the subject. The IMD includes a memory to store program instructions. The IMD includes a processor that, when executing the program instructions, is configured to identify S2 signal segment from the heart sound signals, analyze the S2 signal segment to identify a pulmonary valve signal (P2 signal) and an aortic valve signal (A2 signal) within an S2 signal segment of the heart sound signals. The processor is configured to determine a time interval between the A2 and P2 signals, characterize the S2 signal segment to exhibit a first type of S2 split based on the time interval, and identify a cardiac condition based on a comparison of the first type of S2 split and a cardiac condition matrix.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Stephanie C. Sun
  • Patent number: 11735711
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Russell Bruch, Joseph Beauvais, Jeffrey Armstrong, Del Charles Brooks, III, Christopher Hallmark, John Duggan
  • Patent number: 11730966
    Abstract: Described herein are methods, systems, and devices for estimating remaining longevity of an IMD powered by a battery that at any given time has a battery voltage (BV) and a remaining battery capacity (RBC). Such a method can include estimating the RBC using a first technique when the battery is operating within a t least one of one or more plateau regions, estimating the RBC using a second technique, that differs from the first technique when the battery is operating within a decline region, and estimating the remaining longevity of the IMD based on at least one of the estimates of the RBC. Additionally, historical battery data can be stored and used to estimate the RBC, e.g., when the battery is operating within a heavy usage and recovery period. RBC estimation can also depend on whether the IMD is close to its recommended replacement time (RRT).
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xing Pei, Garuda Rachamalla, Jia Qin
  • Patent number: 11730955
    Abstract: Systems and methods for implanting a medical device include an implantable lead comprising a lead body having a distal end and a proximal end. The implantable lead has electrodes positioned at the distal end and has a lead connector positioned at the proximal end. The lead connector includes lead contacts that are communicatively coupled to the electrodes positioned at the distal end. The lead body has a body outer envelope configured to fit within a lumen of an introducer sheath and the lead connector has a connector outer envelope configured to fit within the lumen of the introducer sheath. A pulse generator has a connector cavity. The lead adaptor is configured to interconnect the implantable lead and the pulse generator. The lead adaptor has an insertable connector that includes mating contacts and an adaptor cavity that includes cavity contacts. The cavity contacts are positioned to engage the lead contacts of the lead connector when the lead connector is inserted into the adaptor cavity.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Alexander R. Bornzin, Gene A. Bornzin, Zoltan Somogyi
  • Patent number: 11730967
    Abstract: A system and method are provided. The system includes a HIS electrode configured to be located proximate to a HIS bundle. A pulse generator is coupled to the HIS electrode and is configured to deliver HIS bundle pacing (HBP), a right atrial (RA) electrode is located in a right atrium, a sensing circuitry coupled to the RA electrode and defines an RA sensing channel that does not utilize the HIS electrode. The system includes a memory including program instructions. The system includes a processor is configured to collect cardiac activity (CA) signals over the RA sensing channel utilizing the RA electrode. The CA signals include a far field (FF) component associated with a ventricular event (VE). The processor analyzes the FF component to identify first and second FF component (FFC) characteristics of interest (COI) of the ventricular event and utilizes the first FFC COI to apply a first capture class (CC) discriminator to distinguish between first and second capture classes.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Wenwen Li, Yun Qiao, Aditya Goil
  • Patent number: 11730378
    Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc
    Inventors: Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
  • Patent number: 11735706
    Abstract: A method includes mixing a solvent with a dry cathode mixture to form a slurry. The dry cathode mixture includes a cathode active material, a conductive diluent, and a polymeric binder. The method further includes removing the solvent from the slurry to form a composition and calendering, in a first calendering step, the composition to form a sheet. The calendering the composition includes passing the composition between calender rollers.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xiaofei Jiang, Russell Bruch, Joseph Beauvais
  • Patent number: 11724112
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, having a header assembly that includes an antenna, is described. The antenna can be integrated into an insulator that separates an electrode of the header assembly from a flange of the header assembly. The antenna includes an antenna loop embedded in a ceramic material of the insulator. The antenna loop is located distal to the flange to reduce the likelihood of signal interference and increase communication range of the antenna. The header assembly is mounted on a housing have an electronics compartment, and an antenna lead extends from the antenna loop to electronic circuitry contained within the electronics compartment. Other embodiments are also described and claimed.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: August 15, 2023
    Assignee: PACESETTER, INC.
    Inventors: Bei Ning Zhang, Brett C. Villavicencio, Perry Li, Souvik Dubey
  • Patent number: 11717691
    Abstract: Cardiac pacing is performed using leadless pacemakers (LPs). An AV delay is determined based on a P-wave duration. When pacing occurs during cardiac cycles starting with intrinsic atrial events, the AV delay is set to the P-wave duration plus a first offset if the P-wave duration is greater than a first threshold duration, and the AV delay is set to the P-wave duration plus a second offset that is greater than the first offset, if the P-wave duration is less than the first threshold duration. When pacing occurs during cardiac cycles starting with paced atrial events, the AV delay is set to the P-wave duration plus a third offset, if the P-wave duration is greater than a second threshold duration, or is set to the P-wave duration plus a fourth offset that is greater than the third offset, if the P-wave duration is less than the second threshold duration.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: August 8, 2023
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Patent number: 11717692
    Abstract: Certain embodiments of the present technology disclosed herein relate to implantable systems, and methods for use therewith, that use a temperature sensor to initially detect an onset of patient activity, and then use a motion sensor to confirm or reject the initial detection of the onset of patient activity. Other embodiments of the present technology disclosed herein relate to implantable systems, and methods for use therewith, that use a motion sensor to initially detect an onset of patient activity, and then use a temperature sensor to confirm or reject the initial detection of the onset of patient activity. The use of both a motion sensor and a temperature sensor provides improvements over using just one of the types of sensors for rate responsive pacing.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 8, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Matthew G. Fishler, Paul Paspa
  • Patent number: 11722108
    Abstract: Described herein is a fully-differential preamplifier comprising an input differential pair, an output current load, and a current source. The current source is coupled between the input differential pair and a low voltage rail and configured to control whether the fully-differential preamplifier is operating in a first mode or a second mode, wherein the preamplifier draws more current when operating in the second mode compared to when operating in the first mode. The input differential pair is coupled between the output current load and the current source. The output current load is coupled between a high voltage rail and the input differential pair. The input differential pair comprise positive and negative inputs of the fully-differential preamplifier. Nodes where the input differential pair and the output current load are coupled to one another comprise positive and negative outputs of the fully-differential preamplifier.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: August 8, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Eric C. Labbe, Benjamin T. Persson
  • Patent number: 11712568
    Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing in a His intracardiac electrogram (His IEGM), characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing within a His IEGM. Other embodiments of the present technology described herein relate to determining whether atrial capture occurs in response to His bundle pacing (HBP). Still other embodiments of the present technology described herein relate to determining whether AV node capture occurs in response to HBP.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: August 1, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden