Patents Assigned to Path Robotics, Inc.
  • Publication number: 20240416519
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Application
    Filed: August 28, 2024
    Publication date: December 19, 2024
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Dylan DESANTIS, Madhavun Candadai VASU
  • Publication number: 20240391109
    Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.
    Type: Application
    Filed: July 31, 2024
    Publication date: November 28, 2024
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima AJAM GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
  • Patent number: 12109709
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: October 8, 2024
    Assignee: Path Robotics, Inc.
    Inventors: Alexander James Lonsberry, Dylan Desantis, Madhavun Candadai Vasu
  • Patent number: 12070867
    Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.
    Type: Grant
    Filed: September 18, 2023
    Date of Patent: August 27, 2024
    Assignee: Path Robotics, Inc.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
  • Publication number: 20240033935
    Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 1, 2024
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima AJAM GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
  • Publication number: 20240025041
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Application
    Filed: July 21, 2023
    Publication date: January 25, 2024
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon DESANTIS, Madhavun Candadai VASU
  • Patent number: 11859964
    Abstract: Some embodiments described herein relate to optical systems and methods for determining the shape and/or size of objects that include projecting a pattern of light onto the object. The pattern of light can be configured such that first-order reflections can be distinguished from second- and/or higher-order reflections, which can be rejected. Thus, even in instances in which the pattern of light is reflected onto the object multiple times, the original, or first-order, reflection can be detected, distinguished, and/or used for laser triangulation. In some embodiments, a pattern of light that does not have reflection and/or rotational symmetry is projected onto the object, such that second-order and/or higher-order reflections can be distinguished from the first-order reflection.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: January 2, 2024
    Assignee: PATH ROBOTICS, INC.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry
  • Publication number: 20230403475
    Abstract: This disclosure provides systems, methods, and apparatuses, including computer programs encoded on computer storage media, that provide for optical techniques for manufacturing robots, such as for filtering certain reflections when scanning an object. For example, the techniques may include receiving, from a detector, sensor data based on detected light, the detected light including reflections of light projected by one or more emitters and reflected off of an object. The techniques may further include determining, based on the sensor data, a first-order reflection and a second-order reflection. The techniques may also include determining, based on the first-order reflection and a second-order reflection, a difference, the difference includes a polarity difference, an intensity difference, or a combination thereof. The techniques may include filtering the second-order reflection based on the difference Other aspects and features are also claimed and described.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 14, 2023
    Applicant: Path Robotics, Inc.
    Inventors: William HUANG, Animesh DHAGAT, Tarushree GANDHI, Jason ROBINSON, Alexander James LONSBERRY
  • Patent number: 11801606
    Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: October 31, 2023
    Assignee: PATH ROBOTICS, INC.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
  • Patent number: 11759958
    Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: September 19, 2023
    Assignee: PATH ROBOTICS, INC.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
  • Patent number: 11759952
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: September 19, 2023
    Assignee: PATH ROBOTICS, INC.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Dylan Desantis, Surag Balajepalli
  • Patent number: 11648683
    Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: May 16, 2023
    Assignee: Path Robotics, Inc.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Nima Ajam Gard, Colin Bunker, Carlos Fabian Benitez Quiroz, Madhavun Candadai Vasu
  • Publication number: 20230047632
    Abstract: In various examples, a computer-implemented method of generating instructions for a welding robot. The computer-implemented method comprises identifying an expected position of a candidate seam on a part to be welded based on a Computer Aided Design (CAD) model of the part, scanning a workspace containing the part to produce a representation of the part, identifying the candidate seam on the part based on the representation of the part and the expected position of the candidate seam, determining an actual position of the candidate seam, and generating welding instructions for the welding robot based at least in part on the actual position of the candidate seam.
    Type: Application
    Filed: November 4, 2022
    Publication date: February 16, 2023
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Nima Ajam GARD, Colin BUNKER, Carlos Fabian BENITEZ QUIROZ, Madhavun Candadai VASU
  • Patent number: 11548162
    Abstract: In some examples, an autonomous robotic welding system comprises a workspace including a part having a seam, a sensor configured to capture multiple images within the workspace, a robot configured to lay weld along the seam, and a controller. The controller is configured to identify the seam on the part in the workspace based on the multiple images, plan a path for the robot to follow when welding the seam, the path including multiple different configurations of the robot, and instruct the robot to weld the seam according to the planned path.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: January 10, 2023
    Assignee: Path Robotics, Inc.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry
  • Publication number: 20220324110
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Applicant: Path Robotics Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY, Dylan DESANTIS
  • Patent number: 11407110
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: August 9, 2022
    Assignee: Path Robotics, Inc.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry, Surag Balajepalli, Dylan Desantis
  • Publication number: 20220170736
    Abstract: Some embodiments described herein relate to optical systems and methods for determining the shape and/or size of objects that include projecting a pattern of light onto the object. The pattern of light can be configured such that first-order reflections can be distinguished from second- and/or higher-order reflections, which can be rejected. Thus, even in instances in which the pattern of light is reflected onto the object multiple times, the original, or first-order, reflection can be detected, distinguished, and/or used for laser triangulation. In some embodiments, a pattern of light that does not have reflection and/or rotational symmetry is projected onto the object, such that second-order and/or higher-order reflections can be distinguished from the first-order reflection.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 2, 2022
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY
  • Publication number: 20220016776
    Abstract: Systems and methods for real time feedback and for updating welding instructions for a welding robot in real time is described herein. The data of a workspace that includes a part to be welded can be received via at least one sensor. This data can be transformed into a point cloud data representing a three-dimensional surface of the part. A desired state indicative of a desired position of at least a portion of the welding robot with respect to the part can be identified. An estimated state indicative of an estimated position of at least the portion of the welding robot with respect to the part can be compared to the desired state. The welding instructions can be updated based on the comparison.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 20, 2022
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY
  • Patent number: 11209264
    Abstract: Some embodiments described herein relate to optical systems and methods for determining the shape and/or size of objects that include projecting a pattern of light onto the object. The pattern of light can be configured such that first-order reflections can be distinguished from second- and/or higher-order reflections, which can be rejected. Thus, even in instances in which the pattern of light is reflected onto the object multiple times, the original, or first-order, reflection can be detected, distinguished, and/or used for laser triangulation. In some embodiments, a pattern of light that does not have reflection and/or rotational symmetry is projected onto the object, such that second-order and/or higher-order reflections can be distinguished from the first-order reflection.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: December 28, 2021
    Assignee: Path Robotics, Inc.
    Inventors: Alexander James Lonsberry, Andrew Gordon Lonsberry
  • Publication number: 20200240772
    Abstract: Some embodiments described herein relate to optical systems and methods for determining the shape and/or size of objects that include projecting a pattern of light onto the object. The pattern of light can be configured such that first-order reflections can be distinguished from second- and/or higher-order reflections, which can be rejected. Thus, even in instances in which the pattern of light is reflected onto the object multiple times, the original, or first-order, reflection can be detected, distinguished, and/or used for laser triangulation. In some embodiments, a pattern of light that does not have reflection and/or rotational symmetry is projected onto the object, such that second-order and/or higher-order reflections can be distinguished from the first-order reflection.
    Type: Application
    Filed: January 31, 2020
    Publication date: July 30, 2020
    Applicant: Path Robotics, Inc.
    Inventors: Alexander James LONSBERRY, Andrew Gordon LONSBERRY