Abstract: Gasket stock is disclosed having a rectangular metal core that is readily bendable in one direction and a deformable rubberized jacket coextruded with and encasing the metal core. A method of fabricating the gasket stock through a coextrusion process is disclosed. A method also is disclosed for forming a press-in-place gasket with the method including obtaining bendable gasket stock, incrementally advancing the gasket stock to predetermined positions in a bender, and bending the gasket stock at the predetermined positions along its length to form a desired shape of the press-in-place gasket. The bender is controlled by a computer to form the shape of the gasket according to a CAD or other electronic file. Finally, a method of supplying press-in-place gaskets and accommodating design changes of such gaskets is disclosed.
Abstract: Disclosed herein is a polyorganosiloxane having the structure of Formula I: wherein, R1 and R2 are independently a hydrocarbon radical, an unsaturated radical, an alkoxy radical, an aryl radical or an alkenyloxy radical. R3 is an organic UV absorbing group, R4 independently is a direct bond, hydrocarbon radical optionally substituted with oxygen and nitrogen, or a group of Formula II(a) or Formula II(b) wherein A and B are a hydrocarbon radical, R5 is independently a hydrogen, a halogen, an aliphatic group having from 1 to 6 carbon atoms, an aromatic group having 6 to 8 carbon atoms, an alkoxy group having from 1 to 6 carbon atoms, or an aryloxy group, R6 is independently a hydroxyl group, an amine group, an acid chloride group, or a sulfonyl halide group, x is from 1 to 300, y is from 0 to 50 and z is from 1 to 50. The polyorganosiloxane is used to make various copolymers or polymer blends. A variety of articles can be made using the polysiloxane described as a polymer blend or copolymer.
Type:
Grant
Filed:
July 2, 2015
Date of Patent:
February 7, 2017
Assignee:
Momentive Performance Material Inc.
Inventors:
Narayana Padmanabha Iyer, Indumathi Ramakrishnan, Roy Rojas-Wahl, Samim Alam
Abstract: This invention is directed to a process for producing a haloorganoalkoxysilane product comprising reacting an olefinic halide, an alkoxysilane, a catalytically effective amount of ruthenium-containing catalyst; and a reaction-promoting effective amount of a peroxy compound, optionally in the presence of an electron-deficient aromatic compound.
Type:
Grant
Filed:
October 12, 2012
Date of Patent:
January 31, 2017
Assignee:
Momentive Performance Materials Inc.
Inventors:
Kenrick Martin Lewis, Jitendra Singh Rathore, Andrea Trotto, Giuseppe D'Agostino
Abstract: A low viscosity filler boron nitride agglomerate particles having a generally spherical shape bound together by an organic binder and to a process for producing a BN powder composition of spherically shaped boron nitride agglomerated particles having a treated surface layer which controls its viscosity.
Type:
Grant
Filed:
August 29, 2003
Date of Patent:
January 24, 2017
Assignee:
Momentive Performance Materials Inc.
Inventors:
David Lodyga, Joseph W. Tereshko, Ajit Sane, Thomas Fox
Abstract: The present invention provides curable compositions comprising non-tin metal catalysts that accelerate the condensation curing of moisture-curable silicones/non-silicones. In particular, the present invention provides bismuth(III) sulfonate complexes that are particularly suitable as replacements for organotin in sealant and RTV formulations. In one embodiment, the present invention provides bismuth (III) camphorsulfonate and bismuth(III) methanesulfonate complexes. Further, these bismuth(III) sulfonate complexes are comparable or superior to organotin such as DBTDL, exhibit certain behavior in the presence of components that allow for tuning or adjusting the cure characteristics of the present compositions, and provide good adhesion and storage stability.
Abstract: The present invention provides curable compositions comprising non-Sn organo-metal catalysts that accelerate the condensation curing of moisture curable silicones/non-silicones. In particular, the present invention provides La(III) complexes that are particularly suitable as replacements for organotin for sealant and RTV formulations. The La(III) complexes are comparable to organotin such as DBTDL and exhibit certain behavior in the presence of components that allow for tuning or adjusting the cure characteristics of the present compositions and provide good adhesion and storage stability.
Abstract: There is described a polysiloxane having the structure: wherein R1, R2, and R3 are independently a hydrocarbon radical, an unsaturated radical, an alkoxy radical, an aryl radical or an alkenyloxy radical, R4 is independently a direct bond or hydrocarbon radical optionally substituted with oxygen and nitrogen, R5 is independently a hydrogen, a halogen, an aliphatic group having from 1 to 6 carbon atoms, an aromatic group having 6 to 8 carbon atoms, an alkoxy group having from 1 to 6 carbon atoms, or an aryloxy group, R6 is independently a hydroxyl group, an amine group, an acid chloride group, or a sulfonyl halide group, x is from 1 to 300; y is from 0 to 50; and z is from 0 to 50. The polysiloxane is used to make various copolymers and polymer blends. A variety of articles can be made using the polysiloxane described as a polymer blend or copolymer.
Type:
Grant
Filed:
July 2, 2015
Date of Patent:
December 13, 2016
Assignee:
Momentive Performance Materials, Inc.
Inventors:
Narayana Padmanabha Iyer, Indumathi Ramakrishnan, Anuj Mittal, Roy Rojas-Wahl, Samim Alam
Abstract: Low viscosity polyorganosiloxanes comprising a) at least one polyorganosiloxane group, b) at least one quaternary ammonium group, c) at least one terminal group, selected from the groups consisting of: c1) at least one terminal mono functional polyorganosiloxane group, c2) at least one terminal ester group, and c3) at least one terminal alkyl-terminated poly ether group, compositions thereof, aqueous emulsions thereof, methods of the manufacture thereof and their use for the modification of surfaces of substrates.
Type:
Grant
Filed:
March 26, 2013
Date of Patent:
December 6, 2016
Assignee:
Momentive Performance Materials Inc.
Inventors:
Roland Wagner, Karl-Heinz Stachulla, Karl-Heinz Sockel, Sigfredo Gonzales, Anne Dussaud
Abstract: Compositions and methods for the production of siloxane materials using an azaphosphatrane as a catalyst. In one embodiment, there is provided a process for the ring opening polymerization of a cyclosiloxane in the presence of an azaphosphatrane. In another embodiment, there is provided a composition and method for condensation curing of a moisture curable composition using an azaphosphatrane.
Type:
Application
Filed:
May 16, 2014
Publication date:
December 1, 2016
Applicant:
Momentive Performance Materials Inc.
Inventors:
Karthikeyan SIVASUBRAMANIAN, Patricia ANDERSON
Abstract: The current invention provides a method to form a stable blend of polyacrylamide water-in-oil emulsion and breaker surfactants such as silicon polyether copolymer and linear or branched alcohol ethoxylate surfactants. The composition can be employed, for example, as a friction reducing additive for water based fracturing fluid, or a drilling mud additive.
Type:
Grant
Filed:
May 16, 2014
Date of Patent:
November 29, 2016
Assignee:
Momentive Performance Materials Inc.
Inventors:
Mukesh Kumar, Kalman Koczo, John Terracina
Abstract: The invention is directed to a cosmetic skin covering sheet which comprises a patch containing a cosmetic material for application to the skin or a cosmetic formulation which forms the cosmetic skin covering sheet in-situ upon topical application of the cosmetic formulation onto the skin, wherein each of said patch or cosmetic formulation comprises an ionic silicone as described herein.
Type:
Grant
Filed:
December 16, 2014
Date of Patent:
November 22, 2016
Assignee:
Momentive Performance Materials Inc.
Inventors:
Monjit Phukan, Anubhav Saxena, Mayank Kumar Dubey, Tushar Navale, Richard A. Presti
Abstract: The present invention provides curable compositions that are substantially free of metal catalysts including both tin and non-tin metal catalysts. The curable compositions employ a catalyst composition comprising the combination of a (i) carbodiimide functional compound, and (ii) an amino-containing compound such as an amino silane functional compound and/or an organic amine compound. The combination of these materials, particularly when aged, accelerates the condensation curing of moisture curable silicones/non-silicones even in the absence of a metal-based catalyst.
Abstract: There is described a release composition including a polyorganosiloxane polymer and a release modifier. The release modifier includes comprising an alkenyl silsesquioxane an organo functional siloxane of the formula MDxM, wherein M represents R3SiO1/2, D represents R2SiO2/2, wherein R is alkyl or alkenyl of 1 to 40 carbon atoms, or hydrogen wherein the organo functional siloxane has a viscosity of from about 5 centipoises to about 80 centipoises and x is from about 5 to about 80, and an optionally a reactive diluent. The release composition includes at least one siloxane cross-linking agent, an inhibitor; and a hydrosilation catalyst.
Abstract: There is provided a trisiloxane having a 3-(meth)acryloxy-substituted (hydroxylcyclohexyl)ethyl group, useful in making water absorbing silicone-hydrogel films for biomedical devices, such as contact lens, and a process for producing these monomers. This invention also provides for copolymers made from the trisiloxane having a 3-(meth)acryloxy-substituted (hydroxylcyclohexyl)ethyl group described herein.
Type:
Grant
Filed:
February 5, 2014
Date of Patent:
November 8, 2016
Assignee:
Momentive Performance Materials Inc.
Inventors:
John Nicholson, Ping Jiang, Vikram Kumar, Anubhav Saxena, Umapathy Senthilkumar, Eric Pohl, Kendall Guyer
Abstract: A method of making a gasket having a high temperature coating that includes obtaining a substrate formed from a metallic material and having the shape of a gasket, applying a nanoparticle suspension over the outer surfaces of the substrate, and heating the substrate to a first elevated temperature to form an undercoat layer of a self-protective oxide coating. The method also includes applying a liquid comprising boron nitride over the undercoat layer and drying the boron nitride liquid at a second elevated temperature to form an overcoat layer.
Abstract: A method for growing a crystalline composition, the first crystalline composition may include gallium and nitrogen. The crystalline composition may have an infrared absorption peak at about 3175 cm?1, with an absorbance per unit thickness of greater than about 0.01 cm?1. In one embodiment, the composition may have an amount of oxygen present in a concentration of less than about 3×1018 per cubic centimeter, and may be free of two-dimensional planar boundary defects in a determined volume of the first crystalline composition.
Type:
Application
Filed:
March 4, 2016
Publication date:
November 3, 2016
Applicant:
MOMENTIVE PERFORMANCE MATERIALS INC.
Inventors:
Mark Philip D'Evelyn, Kristi Jean Narang, Dong-Sil Park, Huicong Hong, Xian-An Cao, Larry Qiang Zeng
Abstract: The present invention relates to a fast curing compositions comprising a (meth)acrylamide functionalized hydrophilic silicone monomers having a polyether moiety containing a branched linking group. In one embodiment, such compositions are useful for preparing water-absorbing silicone-hydrogel films for contact lens applications. In one embodiment, the (meth)acrylamide monomers disclosed here have a branched linking group on the polyether moiety which makes it possible to produce hydrophilic polyether modified silicone copolymers without the need to separate various by-products including, but not limited to, unreacted, isomerized polyether and associated high molecular weight by-products.
Type:
Grant
Filed:
September 22, 2014
Date of Patent:
October 4, 2016
Assignee:
Momentive Performance Materials Inc.
Inventors:
Anubhav Saxena, Shreedhar Bhat, Senthilkumar Umapathy, Kenrick M. Lewis
Abstract: There is provided a fast curing composition comprising an alpha, beta-unsaturated amido-containing organosilicon compound, useful in making water absorbing silicone-hydrogel films for biomedical devices, such as contact lens, and a process for producing these monomers. This invention also provides for hydrogels made from the alpha, beta-unsaturated amido-containing organosilicon compound described herein.
Type:
Grant
Filed:
September 22, 2014
Date of Patent:
September 27, 2016
Assignee:
Momentive Performance Materials Inc.
Inventors:
Anubhav Saxena, Shreedhar Bhat, Kenrick M. Lewis
Abstract: Disclosed herein are cobalt complexes containing terdentate pyridine di-imine ligands and their use as efficient, reusable, and selective dehydrogenative silylation, crosslinking, and tandem dehydrogenative silylation-hydrogenation catalysts.
Type:
Grant
Filed:
May 6, 2014
Date of Patent:
September 20, 2016
Assignee:
Momentive Performance Materials Inc.
Inventors:
Aroop Kumar Roy, Crisita Carmen Hojilla Atienza, Paul J. Chirik, Kenrick M. Lewis, Keith J. Weller, Susan Nye, Johannes G. P. Delis, Julie L. Boyer, Tianning Diao, Eric Pohl
Abstract: A particulate-filled rubber composition contains at least one silane-reactive particulate filler and a mixture of at least one blocked mercaptosilane coupling agent possessing two thioacyl groups and at least one blocked mercaptosilane possessing a single thioacyl group.