Abstract: A highly aqueous acidic cleaning composition for copper oxide etch removal from Cu-dual damascene microelectronic structures and wherein that composition prevents or substantially eliminates copper redeposition on the Cu-dual damascene microelectronic structure.
Type:
Grant
Filed:
October 6, 2009
Date of Patent:
July 9, 2013
Assignee:
Avantor Performance Materials, Inc.
Inventors:
Glenn Westwood, Seong Jin Hong, Sang In Kim
Abstract: There is provided herein a functionalized ionic silicone composition comprising a silicone of the formula (I): M1aM2bM3cD1dD2eD3fT1gT2hT3iQj??(I) which contains a monovalent radical bearing ion-pairs and having the formula (II): -A-Ix-Mny+; where A is a spacing group having at least 2 spacing atoms selected from a divalent hydrocarbon or hydrocarbonoxy group, where I is an ionic group such as sulfonate —SO3?, carboxylate —COO?, phosphonate —PO32? group and phosphate —OPO32?, where M is hydrogen or a cation independently selected from alkali metals, alkali earth metals, transition metals, metals, quaternary ammonium and phosphonium groups; or, zwitterions having the formula (III): —R?—NR?2+—R??—I??(III) where I is defined as above, and where the subscript a, b, c, d, e, f, g, h, i, j are zero or positive subject to the following limitations: 2?a+b+c+d+e+f+g+h+i+j?6000, b+e+h>0 and c+f+i>0.
Abstract: A composition including an actinic radiation or thermally curable polyorganosiloxane ionomer having one or more reactive groups, for example, vinyl, acrylate, epoxy groups.
Abstract: A process for the manufacture of polyorganosiloxanes having ionic groups and reactive functional groups includes (a) conversion of a low molecular weight aralkylene modified polysiloxane to a corresponding sulfonic acid functional material by treating the low molecular weight aralkylene modified polysiloxane with a sulfonating agent; (b) subjecting the reaction product obtained in step (a) to an equilibration reaction with an acid catalyzed ring opening polymerization-effective polyorganosiloxane; and (c) subjecting the reaction product obtained in step (b) to a hydrosilylation reaction with an unsaturated hydrocarbon containing at least one epoxy group, an unsaturated hydrocarbon containing at least two unsaturation moieties, an unsaturated hydrocarbon containing at least one sulfur heteroatom, an unsaturated hydrocarbon containing a monovalent organosilane group, an unsaturated hydrocarbon containing one hydroxyl containing group, an unsaturated hydrocarbon containing one or more of a halogen, carboxylate,
Abstract: An ionically cross-linked silicone elastomeric composition including a polyorganosiloxane of the general formula MaMsbDcDsdTeTsfQ and optionally reinforcing or non-reinforcing fillers, and can include wound care agents, personal care ingredients, seed coating agents, agricultural agents, antimicrobial agents and/or antifouling agents.
Type:
Application
Filed:
January 4, 2012
Publication date:
July 4, 2013
Applicant:
Momentive Performance Materials Inc.
Inventors:
Anubhav Saxena, Alok Sarkar, M Srividhya
Abstract: A curable composition of ionic silicones includes a silicone having the formula M1aM2bM3cD1dD2eD3fT1gT2hT3iQj having ionic groups and crosslinking functional groups. The composition can further include polyorganosiloxane having the average compositional formula R26nR27o(OH)pSiO(4-n-o-p)/2, organohydrogenoligosiloxane or organohydrogenpolysiloxane that has the average compositional formula HqR28rSiO(4-q-r)/2 a transition metal catalyst and other components such as UV stabilizer, cure accelerator, pigment, dye, antimicrobial agent, biocide, surfactant, functional or non-functional filler, conductive filler, finely divided surface treated/untreated metal oxides, clay, plasticizers, tackifiers, mold release agents, adhesion promoters, compatibilizers, pharmaceutical excipients, surfactants or antistatic agents.
Abstract: The present invention relates to a composition and process for preparing fine-celled polyurethane foam obtained from frothing a polyurethane foam-forming composition possessing a synergistic combination of silicone surfactants.
Abstract: A crosslinked polysulfide-containing cycloaliphatic compound, useful as a crosslinker for filled sulfur-vulcanizable elastomer compositions, is represented by the general formula: [(CaH2a-)mG1(-CbH2bSx—)n?m]o[CcH2c-G2-CdH2dSy—]p[R]q wherein G1 is a saturated, monocyclic aliphatic group of valence n containing from 5 to 12 carbon atoms and optionally containing at least one halogen or a saturated monocyclic silicone [RSiO—]n[R2SiO—]r group of valence n; G2 is a saturated, divalent cyclic aliphatic group of valence 2 containing from 5 to 12 carbon atoms and optionally containing at least one halogen or a saturated monocyclic silicone [RSiO—]n[R2SiO—]r group of valence n; each R independently is a selected from the group consisting of a hydrogen atom, monovalent hydrocarbon of up to 20 carbon atoms and a halogen atom; each occurrence of subscripts a, b, c, d, m, n, o, p, q, x and y independently is an integer wherein a is 2 to 6; b is 2 to 6; c is 1 to 6; d is 1 to 6; m is 1 or 2; n is 3 to 5; o is a positive
Type:
Grant
Filed:
October 30, 2008
Date of Patent:
June 25, 2013
Assignee:
Momentive Performance Materials Inc.
Inventors:
Richard W. Cruse, William Michael York, Carla Recker, Thomas Kramer, Katharina Herzog
Abstract: Disclosed herein is the use of manganese, iron, cobalt, or nickel complexes containing tridentate pyridine di-imine ligands as hydrosilylation catalysts. These complexes are effective for efficiently catalyzing hydrosilylation reactions, as well as offering improved selectivity and yield over existing catalyst systems.
Type:
Application
Filed:
December 14, 2011
Publication date:
June 20, 2013
Applicants:
Princeton University, Momentive Performance Materials Inc.
Inventors:
Keith James Weller, Crisita Carmen H. Atienza, Julie Boyer, Paul Chirik, Johannes G.P. Delis, Kenrick Lewis, Susan A. Nye
Abstract: Disclosed herein are self-crosslinking compositions containing a hydrosilation catalyst and the reaction product of a mixture comprising (i) a resinous copolymer having both silicon-bonded hydrogen and silanol groups, and (ii) one or more vinyl-functional polyorganosiloxanes. These compositions have stable post-cure adhesive properties and are suitable for use in electronic applications.
Abstract: Compositions comprising disiloxane surfactant compositions comprising a silicone composition comprising a silicone having the formula: MM? where M=R1R2R3SiO1/2; M?=R4R5R6SiO1/2; with R1 selected from the group consisting of branched monovalent hydrocarbon radical of from 3 to 6 carbon atoms and R7, where R7 has the formula: R8R9R10SiR12 with R8, R9, and R10 each independently selected from the group of monovalent hydrocarbon radicals having from 1 to 6 carbon atoms and monovalent aryl or alkaryl hydrocarbon radicals having from 6 to 13 carbon atoms and R12 is a divalent hydrocarbon radical having from 1 to 3 carbon atoms, R2 and R3 are each independently selected from the group of from 1 to 6 carbon atom monovalent hydrocarbon radicals or R1, with R4 an alkylpolyalkyleneoxide of the general formula: R13(C2H4O)a(C3H6O)b(C4H8O)cR14 where R13 is a divalent linear or branched hydrocarbon radical having the structure: —CH2—CH(R15)(R16)dO— where R15 is H or methyl; R16 is a divalent alkyl radical of
Type:
Grant
Filed:
November 19, 2009
Date of Patent:
June 11, 2013
Assignee:
Momentive Performance Materials Inc.
Inventors:
Mark D. Leatherman, George A. Policello, Suresh K. Rajaramaran
Abstract: The invention relates to sulfur silane coupling agents containing multiple blocked mercapto groups which are in a state of reduced activity until activated. The coupling agents are advantageously used in rubber formulations, for example, for fabricating tires with low rolling resistance.
Abstract: There is provided herein a composition comprising the non-covalent bonded reaction product of a hydrophilic polymer containing an acid functional group and a hydrophobic polymer which contains an amine group bound directly to the hydrophobic polymer backbone; and, optionally a diluent, as well as a process of making such a composition.
Abstract: There is provided a predominantly open-cell polyurethane foam obtained from a predominantly open-cell polyurethane foam-forming reaction medium which comprises: a) at least one polyol; b) at least one polyisocyanate; c) at least one catalyst; d) water; e) a predominantly open-cell polyurethane foam-forming amount of at least one surfactant which is a balanced, substantially linear polyether-polysiloxane ABA? block copolymer; and, f) optionally, at least one additional component selected from the group consisting of other polymer and/or copolymer, chain extender, crosslinker, non-aqueous blowing agent, filler, reinforcement, pigment, tint, dye, colorant, flame retardant, antioxidant, antiozonant, UV stabilizer, anti-static agent, biocide and biostat.
Type:
Grant
Filed:
September 11, 2007
Date of Patent:
May 7, 2013
Assignee:
Momentive Performance Materials Inc.
Inventors:
William L. Brown, Paul L. Matlock, Louis Muller, Fabrice Ponthet
Abstract: A process for manufacturing an organosilicon product having a stabilized low color and no formation of black particles during storage includes (a) reacting an unsaturated compound with a silicon compound having a reactive Si—H bond under hydrosilylation conditions in a reaction zone in the presence of a heterogeneous precious metal catalyst to provide an organosilicon product having a color of less than 40 pt/co; (b) separating the heterogeneous precious metal catalyst from the organosilicon product; and (c) recovering the heterogeneous precious metal catalyst.
Type:
Application
Filed:
October 31, 2011
Publication date:
May 2, 2013
Applicant:
Momentive Performance Materials Inc.
Inventors:
He Bai, Kevin L. Bobbitt, Michael R. Powell
Abstract: Organosilicon compounds are prepared by the addition reaction of a gaseous unsaturated hydrocarbon with a silane or siloxane containing at least one silicon-bonded hydrogen atom in the presence of a hydrosilylation catalyst in a liquid reaction medium. In this process the unsaturated hydrocarbon and optionally the silane or siloxane is dispersed into the liquid reaction medium by a jet eductor (also known as a venturi pump) device and the resultant gas-in-liquid dispersion is introduced into a bubble reactor.
Type:
Grant
Filed:
June 30, 2009
Date of Patent:
April 16, 2013
Assignee:
Momentive Performance Materials Inc.
Inventors:
Larry A. Divins, Frank D. Mendicino, John P. Smith, Marco Veri
Abstract: A thermal interface material is constructed from a base matrix comprising a polymer and 5 to 90 wt. % of boron nitride filler having a platelet structure, wherein the platelet structure of the boron nitride particles are substantially aligned for the thermal interface material to have a bulk thermal conductivity of at least 1 W/mK.
Type:
Grant
Filed:
January 9, 2008
Date of Patent:
March 26, 2013
Assignee:
Momentive Performance Materials Inc.
Inventors:
Ramamoorthy Ramasamy, Gregory W. Shaffer, Paulo Meneghetti