Patents Assigned to Phelps Dodge Corporation
  • Patent number: 7431810
    Abstract: An electrowinning cell, having a tank with an opened upper end defined by a tank edge, electrolyte within the tank and a plurality of flat, metallic electrode plates disposed within the tank in side-by-side, spaced-apart, parallel relationship. Adjacent electrode plates define an electrode gap therebetween. An injector manifold is disposed at the bottom of the tank for feeding electrolyte into the tank at locations below the electrode plates. A collector grid, comprised of a plurality of collectors having ports, define an upper level of electrolyte by collecting the electrolyte from the tank. The ports are disposed in spaced-apart relationship within the open upper end defined by the tank edge. The collector grid and the injector creating a flow of electrolyte upward between the plates as the electrolyte flows from the manifold locations below the plates to the ports.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: October 7, 2008
    Assignee: Phelps Dodge Corporation
    Inventors: Jean-Louis Huens, Peter Peckham
  • Publication number: 20080216606
    Abstract: The present invention relates generally to a process for recovering copper and other metal values from metal-containing materials using controlled, super-fine grinding and medium temperature pressure leaching. Processes embodying aspects of the present invention may be beneficial for recovering a variety of metals such as copper, gold, silver, nickel, cobalt, molybdenum, rhenium, zinc, uranium, and platinum group metals, from metal-bearing materials, and find particular utility in connection with the extraction of copper from copper sulfide ores and concentrates.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 11, 2008
    Applicant: PHELPS DODGE CORPORATION
    Inventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, Wayne W. Hazen, Philip Thompson, David R. Baughman, Roland Schmidt
  • Publication number: 20080217185
    Abstract: This invention relates to a system and method for producing a metal powder product using conventional electrowinning chemistry (i.e., oxygen evolution at an anode) in a flow-through electrowinning cell. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes and/or direct electrowinning.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 11, 2008
    Applicant: PHELPS DODGE CORPORATION
    Inventors: Antonioni C. Stevens, Stanley R. Gilbert, Scot P. Sandoval, Timothy G. Robinson, John O. Marsden
  • Publication number: 20080217169
    Abstract: The present invention relates, generally, to a method and apparatus for electrowinning metals, and more particularly to a method and apparatus for copper electrowinning using the ferrous/ferric anode reaction. In general, the use of a flow-through anode—coupled with an effective electrolyte circulation system—enables the efficient and cost-effective operation of a copper electrowinning system employing the ferrous/ferric anode reaction at a total cell voltage of less than about 1.5 V and at current densities of greater than about 26 Amps per square foot (about 280 A/m2), and reduces acid mist generation. Furthermore, the use of such a system permits the use of low ferrous iron concentrations and optimized electrolyte flow rates as compared to prior art systems while producing high quality, commercially saleable product (i.e., LME Grade A copper cathode or equivalent), which is advantageous.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 11, 2008
    Applicant: PHELPS DODGE CORPORATION
    Inventors: Scot Philip Sandoval, Timothy George Robinson, Paul Richard Cook
  • Publication number: 20080156656
    Abstract: The present invention relates generally to a process for recovering copper and other metal values from metal-containing materials through pressure leaching operations. In accordance with the various aspects of the present invention, metal-containing pregnant leach solutions from pressure leaching operations need not be significantly diluted to facilitate effective metal recovery using solvent extraction and electrowinning.
    Type: Application
    Filed: December 7, 2007
    Publication date: July 3, 2008
    Applicant: PHELPS DODGE CORPORATION
    Inventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, Wayne W. Hazen, Philip Thompson, David R. Baughman
  • Patent number: 7393438
    Abstract: This invention relates to an apparatus for producing a metal powder product using either conventional electrowinning or alternative anode reaction chemistries in a flow-through electrowinning cell. A new design for a flow-through electrowinning cell that employs both flow-through anodes and flow-through cathodes is described. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes, direct electrowinning, or alternative anode reaction chemistry.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: July 1, 2008
    Assignee: Phelps Dodge Corporation
    Inventors: John O Marsden, Scot P Sandoval, Antonioni C Stevens, Timothy G Robinson, Stanley R Gilbert
  • Patent number: 7378011
    Abstract: The present invention relates, generally, to a method and apparatus for electrowinning metals, and more particularly to a method and apparatus for copper electrowinning using the ferrous/ferric anode reaction. In general, the use of a flow-through anode—coupled with an effective electrolyte circulation system—enables the efficient and cost-effective operation of a copper electrowinning system employing the ferrous/ferric anode reaction at a total cell voltage of less than about 1.5 V and at current densities of greater than about 26 Amps per square foot (about 280 A/m2), and reduces acid mist generation. Furthermore, the use of such a system permits the use of low ferrous iron concentrations and optimized electrolyte flow rates as compared to prior art systems while producing high quality, commercially saleable product (i.e., LME Grade A copper cathode or equivalent), which is advantageous.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: May 27, 2008
    Assignee: Phelps Dodge Corporation
    Inventors: Scot Philip Sandoval, Timothy George Robinson, Paul Richard Cook
  • Patent number: 7378010
    Abstract: This invention relates to a system and method for producing a metal powder product using conventional electrowinning chemistry (i.e., oxygen evolution at an anode) in a flow-through electrowinning cell. The present invention enables the production of high quality metal powders, including copper powder, from metal-containing solutions using conventional electrowinning processes and/or direct electrowinning.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: May 27, 2008
    Assignee: Phelps Dodge Corporation
    Inventors: Antonioni C Stevens, Stanley R Gilbert, Scot P Sandoval, Timothy G Robinson, John O Marsden
  • Publication number: 20080105556
    Abstract: The present invention relates, generally, to a method and apparatus for electrowinning metals, and more particularly to a method and apparatus for copper electrowinning using the ferrous/ferric anode reaction and a flow-through anode, such as, for example, a dimensionally stable carbon, carbon composite, metal-graphite, or stainless steel anode. In general, the use of a flow-through anode—coupled with an effective electrolyte circulation system—enables the efficient and cost-effective operation of a copper electrowinning system employing the ferrous/ferric anode reaction at a total cell voltage of less than about 1.5 V and at current densities of greater than about 26 Amps per square foot (about 280 A/m2), and reduces acid mist generation. Furthermore, the use of such a system permits the use of low ferrous iron concentrations and optimized electrolyte flow rates as compared to prior art systems while producing high quality, commercially saleable product (i.e.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 8, 2008
    Applicant: PHELPS DODGE CORPORATION
    Inventors: Scot Sandoval, Paul Cook, Wesley Hoffman, Timothy Robinson
  • Patent number: 7368049
    Abstract: The present invention relates, generally, to a method and apparatus for electrowinning metals, and more particularly to a method and apparatus for copper electrowinning using the ferrous/ferric anode reaction and a flow-through anode, such as, for example, a dimensionally stable carbon, carbon composite, metal-graphite, or stainless steel anode. In general, the use of a flow-through anode—coupled with an effective electrolyte circulation system—enables the efficient and cost-effective operation of a copper electrowinning system employing the ferrous/ferric anode reaction at a total cell voltage of less than about 1.5 V and at current densities of greater than about 26 Amps per square foot (about 280 A/m2), and reduces acid mist generation. Furthermore, the use of such a system permits the use of low ferrous iron concentrations and optimized electrolyte flow rates as compared to prior art systems while producing high quality, commercially saleable product (i.e.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: May 6, 2008
    Assignee: Phelps Dodge Corporation
    Inventors: Scot P. Sandoval, Paul R. Cook, Wesley P. Hoffman, Timothy G. Robinson
  • Patent number: 7341700
    Abstract: The present invention relates generally to a process for recovering copper and other metal values from metal-containing materials using controlled, super-fine grinding and medium temperature pressure leaching. Processes embodying aspects of the present invention may be beneficial for recovering a variety of metals such as copper, gold, silver, nickel, cobalt, molybdenum, rhenium, zinc, uranium, and platinum group metals, from metal-bearing materials, and find particular utility in connection with the extraction of copper from copper sulfide ores and concentrates.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: March 11, 2008
    Assignee: Phelps Dodge Corporation
    Inventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, Wayne W. Hazen, Philip Thompson, David R. Baughman, Roland Schmidt
  • Publication number: 20080047839
    Abstract: The present invention relates, generally, to a method and apparatus for electrowinning metals, and more particularly to a method and apparatus for copper electrowinning using the ferrous/ferric anode reaction and a flow-through anode, such as, for example, a dimensionally stable carbon, carbon composite, metal-graphite, or stainless steel anode. In general, the use of a flow-through anode—coupled with an effective electrolyte circulation system—enables the efficient and cost-effective operation of a copper electrowinning system employing the ferrous/ferric anode reaction at a total cell voltage of less than about 1.5 V and at current densities of greater than about 26 Amps per square foot (about 280 A/m2), and reduces acid mist generation. Furthermore, the use of such a system permits the use of low ferrous iron concentrations and optimized electrolyte flow rates as compared to prior art systems while producing high quality, commercially saleable product (i.e.
    Type: Application
    Filed: October 31, 2007
    Publication date: February 28, 2008
    Applicant: PHELPS DODGE CORPORATION
    Inventors: Scot Sandoval, Paul Cook, Wesley Hoffman, Timothy Robinson
  • Publication number: 20080023342
    Abstract: The present invention relates generally to a process for recovering copper and/or other metal values from a metal-bearing ore, concentrate, or other metal-bearing material using pressure leaching and direct electrowinning. More particularly, the present invention relates to a substantially acid-autogenous process for recovering copper from chalcopyrite-containing ore using pressure leaching and direct electrowinning in combination with a leaching, solvent/solution extraction and electrowinning operation. In accordance with one aspect of the process, at least a portion of the residue from the pressure leaching operation is directed to a heap, stockpile or other leaching operation.
    Type: Application
    Filed: May 1, 2007
    Publication date: January 31, 2008
    Applicant: PHELPS DODGE CORPORATION
    Inventors: John Marsden, John Wilmot, Christy Green, Wayne Hazen, David Baughman
  • Publication number: 20070268155
    Abstract: A position tracking system for determining a position of a vehicle. The position tracking system invention includes at least two position-enabled mesh nodes mounted to the vehicle and a mesh network operatively associated with the at least two position-enabled mesh nodes mounted the vehicle. The mesh network is configured to determine a position of the vehicle based on signals received from the at least two position-enabled mesh nodes mounted to the vehicle. The position tracking system also includes a display system, which is operatively associated with the mesh network and which displays the position of the vehicle.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 22, 2007
    Applicant: PHELPS DODGE CORPORATION
    Inventors: Steven C. HOLMES, Mark W. BARTLETT, Robert D. COYLE, Russell ARMBRUST, Donald W. TREADAWAY, Steve L. WILLIAMSON, James Edward HANSON, Jennifer D. CARPENTER
  • Publication number: 20070039420
    Abstract: The present invention is directed to a system for recovering metal values from metal-bearing materials. During a reactive process, a seeding agent is introduced to provide a nucleation site for the crystallization and/or growth of solid species which otherwise tend to passivate the reactive process or otherwise encapsulate the metal value, thereby reducing the amount of desired metal values partially or completely encapsulated by such material. The seeding agent may be generated in a number of ways, including the recycling of residue or the introduction of foreign substances. Systems embodying aspects of the present invention may be beneficial for recovering a variety of metals such as copper, gold, silver, nickel, cobalt, molybdenum, zinc, rhenium, uranium, rare earth metals, and platinum group metals from any metal-bearing material, such as ores and concentrates.
    Type: Application
    Filed: October 23, 2006
    Publication date: February 22, 2007
    Applicant: PHELPS DODGE CORPORATION
    Inventors: John Marsden, Robert Brewer, Joanna Robertson, David Baughman, Philip Thompson, Wayne Hazen, Roland Schmidt
  • Patent number: 7125436
    Abstract: The present invention is directed to a system for recovering metal values from metal-bearing materials. During a reactive process, a seeding agent is introduced to provide a nucleation site for the crystallization and/or growth of solid species which otherwise tend to passivate the reactive process or otherwise encapsulate the metal value, thereby reducing the amount of desired metal values partially or completely encapsulated by such material. The seeding agent may be generated in a number of ways, including the recycling of residue or the introduction of foreign substances. Systems embodying aspects of the present invention may be beneficial for recovering a variety of metals such as copper, gold, silver, nickel, cobalt, molybdenum, zinc, rhenium, uranium, rare earth metals, and platinum group metals from any metal-bearing material, such as ores and concentrates.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 24, 2006
    Assignee: Phelps Dodge Corporation
    Inventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, David R. Baughman, Philip Thompson, Wayne W. Hazen, Roland Schmidt
  • Publication number: 20060226024
    Abstract: The present invention relates, generally, to a method and apparatus for electrowinning metals, and more particularly to a method and apparatus for copper electrowinning using the ferrous/ferric anode reaction and a flow-through anode, such as, for example, a dimensionally stable carbon, carbon composite, metal-graphite, or stainless steel anode. In general, the use of a flow-through anode—coupled with an effective electrolyte circulation system—enables the efficient and cost-effective operation of a copper electrowinning system employing the ferrous/ferric anode reaction at a total cell voltage of less than about 1.5 V and at current densities of greater than about 26 Amps per square foot (about 280 A/m2), and reduces acid mist generation. Furthermore, the use of such a system permits the use of low ferrous iron concentrations and optimized electrolyte flow rates as compared to prior art systems while producing high quality, commercially saleable product (i.e.
    Type: Application
    Filed: April 8, 2005
    Publication date: October 12, 2006
    Applicant: PHELPS DODGE CORPORATION
    Inventors: Scot Sandoval, Paul Cook, Wesley Hoffman, Timothy Robinson
  • Publication number: 20060196313
    Abstract: A method for recovering copper from a copper-containing ore, concentrate, or other copper-bearing material to produce high quality cathode copper from a leach solution without the use of copper solvent extraction techniques or apparatus. A method for recovering copper from a copper-containing ore generally includes the steps of providing a feed stream containing comminuted copper-containing ore, concentrate, or other copper-bearing material, leaching the feed stream to yield a copper-containing solution, conditioning the copper-containing solution through one or more physical or chemical conditioning steps, and electrowinning copper directly from the copper-containing solution, without subjecting the copper-containing solution to solvent extraction.
    Type: Application
    Filed: December 5, 2005
    Publication date: September 7, 2006
    Applicant: PHELPS DODGE CORPORATION
    Inventors: John Marsden, Robert Brewer, Joanna Robertson, David Baughman, Philip Thompson, Wayne Hazen, Christel Bemelmans
  • Publication number: 20060191377
    Abstract: The present invention relates generally to a process for the production of sulfuric acid and liberation of precious metal values from materials containing sulfur through pressure leaching operations. In accordance with various aspects of the present invention, the sulfur-bearing materials may comprise residues from pressure leaching operations, such as those carried out at medium temperatures. The process of the present invention can be advantageously used to convert such sulfur-bearing materials to sulfuric acid by means of pressure leaching. The sulfuric acid so produced can be used beneficially in other mineral processing operations, for example those at the site where it is produced. Metals, such as precious metals, that are contained within the sulfur-bearing materials advantageously may be recovered from processing products by established precious metals recovery technology.
    Type: Application
    Filed: May 9, 2006
    Publication date: August 31, 2006
    Applicant: PHELPS DODGE CORPORATION
    Inventors: John Marsden, Robert Brewer, Joanna Robertson, Wayne Hazen, Philip Thompson, David Baughman
  • Publication number: 20060144716
    Abstract: A system and process for recovering copper from a copper-containing ore, concentrate, or other copper-bearing material to produce high quality cathode copper from a leach solution without the use of copper solvent/solution extraction techniques or apparatus. A process for recovering copper from a copper-containing ore generally includes the steps of providing a feed stream containing comminuted copper-containing ore, concentrate, or other copper-bearing material, leaching the feed stream to yield a copper-containing solution, conditioning the copper-containing solution through one or more physical or chemical conditioning steps, and electrowinning copper directly from the copper-containing solution in multiple electrowinning stages, without subjecting the copper-containing solution to solvent/solution extraction prior to electrowinning.
    Type: Application
    Filed: October 28, 2005
    Publication date: July 6, 2006
    Applicant: PHELPS DODGE CORPORATION
    Inventors: John Marsden, Robert Brewer, Joanna Robertson, David Baughman, Philip Thompson, Wayne Hazen, Christel Bemelmans, Susan Brewer