Patents Assigned to Phillips Petroleum Company
  • Patent number: 6384161
    Abstract: The present invention provides a process for preparing a supported metallocene catalyst system that can be used to catalyze formation of polyolefins having a wide molecular weight range. In accordance with the process of the present invention, a first portion of an inorganic oxide is dried under a first set of conditions, wherein upon treatment with an organoaluminoxide and a metallocene, a first catalyst system is formed usable to produce a polyolefin product having a first molecular weight average distribution. A second portion of an inorganic oxide under a second set of conditions, wherein upon treatment with an organoaluminoxane and a metallocene, a second catalyst system is formed usable to produce polyolefin product having a second molecular weight distribution. An amount of the first portion is mixed with an amount of the second portion to produce a final inorganic oxide support.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: May 7, 2002
    Assignee: Phillips Petroleum Company
    Inventors: M. Bruce Welch, David W. Dockter, Syriac J. Palackal, Bryan E. Hauger, David C. Rohlfing
  • Patent number: 6380329
    Abstract: A process is provided which comprises preparing heterogeneous or homogeneous catalyst systems comprising cyclodisilizane complexes of Group IV metals wherein said metal is selected from consisting of titanium, zirconium and hafnium; and a cocatalyst selected from the group consisting of methylaluminoxane and fluoro organic boron compounds and mixtures thereof. This invention also provides polymerization processes comprising contacting a mono-1-olefin, and optionally one or more higher alpha-olefins, in a reaction zone with cyclodisilizane complexes of Group IV metals catalyst systems and in the presence of a cocatalyst selected from the group consisting of aluminoxane, fluoro organic boron compounds, and mixtures thereof are provided.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: April 30, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Michael D. Jensen, Kenneth R. Farmer
  • Patent number: 6380451
    Abstract: The specification discloses a method for cleaning an oligomerization reactor after making a higher olefin in the reactor. An olefin is reacted in the presence of a catalyst comprising an aluminum alkyl to form an olefin reaction product. For example, ethylene can be trimerized in the reaction to produce 1-hexene. The reaction also causes a co-product residue of the catalyst to form on the interior surface of the reactor. The interior surface of the reactor is then contacted with an alcohol under conditions effective to remove at least a substantial amount of the catalyst residue from the interior surface of the reactor. The catalyst-removing step can be carried out by combining an alcohol with the process medium used in the reactor. The combined medium can be used to remove both the accumulated polymer co-product and the accumulated catalyst residue from the reactor.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: April 30, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Bruce E. Kreischer, Warren M. Ewert, Ronald D. Knudsen
  • Patent number: 6376415
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce said polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted treated solid oxide compound.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: April 23, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, James B. Kimble, Kathy S. Collins, Elizabeth A. Benham, Michael D. Jensen, Gil R. Hawley, Joel L. Martin
  • Publication number: 20020043484
    Abstract: Particulate sorbent compositions comprising zinc titanate support having thereon a substantially reduced valence promotor metal selected from the group consisting of cobalt, nickel, iron, manganese, copper, molybdenum, tungsten, silver, tin and vanadium or mixtures thereof provide a system for the desulfurization of a feed stream of cracked-gasolines or diesel fuels in a desulfurization zone by a process which comprises contacting such feed streams in a desulfurization zone with a particulate sorbent composition followed by separation of the resulting low sulfur-containing steam and sulfurized sorbent and thereafter regenerating and activating the separated sorbent before recycle of same to the desulfurization zone.
    Type: Application
    Filed: October 17, 2001
    Publication date: April 18, 2002
    Applicant: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6372680
    Abstract: A catalyst system comprising a first solid material comprising a silicoaluminophosphate and a second solid material comprising a zeolite and a compound containing zinc and a metal selected from the group consisting of Group IIIA and Group VIB, and a method of preparing such catalyst system, are disclosed. The thus-obtained catalyst system is employed as a catalyst in the conversion of at least a portion of a hydrocarbon feedstock comprising oxygenated hydrocarbons to aromatics (BTX), and, in particular, xylenes. In an alternate embodiment, a hydrocarbon feedstock comprising oxygenated hydrocarbons are converted to aromatics by sequentially contacting the hydrocarbon feedstock with the first solid material and then the second solid material.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: April 16, 2002
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6372930
    Abstract: Polymeric ligands, polymeric metallocenes, and processes for preparing same are provided. The process for preparing polymeric metallocenes comprises reacting a polymeric ligand, a transition metal compound, and an alkali metal compound. In one embodiment, a process for preparing polymeric ligands comprises reacting at least one bridged cyclopentadienyl-type monomer and an initiator under polymerization conditions. In another embodiment, a polymeric ligand is represented by the formula [Q′]n, wherein Q′ is a unit containing at least one bridged cyclopentadienyl-type group and wherein n is 1-5000.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: April 16, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Peter Schertl, Helmut G. Alt, M. Bruce Welch, Bernd Peifer, Syriac J. Palackal
  • Patent number: 6369000
    Abstract: A process of making a metal aluminate catalyst support by incorporating, preferably impregnating, alumina, preferably gamma alumina, with a metal component to thereby provide a metal-incorporated alumina which is then calcined under a calcining condition to thereby provide a metal aluminate catalyst support. Such calcining condition includes a temperature in the range of from about 600° C. to about 1350° C. Preferably the metal component has been melted under a melting condition to thereby provide a melted metal component.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: April 9, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Marvin M. Johnson, Tin-Tack Peter Cheung, Darin B. Tiedtke
  • Publication number: 20020039960
    Abstract: Metallocycle metallocenes are produced by reacting a first metallocene having an aralkyl group or an aryl dialkyl silyl group attached to a cyclodienyl group with about two molar equivalents of an alkali metal alkyl having at least 4 carbon atoms. The use of the metallocycle metallocenes as components of catalyst for the polymerization of olefins is also disclosed.
    Type: Application
    Filed: October 11, 2001
    Publication date: April 4, 2002
    Applicant: Phillips Petroleum Company
    Inventors: Helmut G. Alt, M. Bruce Welch
  • Patent number: 6364015
    Abstract: The closure pressure (Pc) of a fracture generated in a subterranean formation is determined by creating a fracture in the formation, permitting the fracture to close, and performing post-closure pulse testing. The method is particularly applicable to soft formations (i.e. those having a rock plain-strain modulus (E′) of less than 800,000 psi).
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: April 2, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Eric R. Upchurch
  • Publication number: 20020035228
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra high molecular weight ethylene homopolymers and ultra high molecular weight ethylene copolymers. Catalyst systems used are selected from the group consisting of inorganic oxide supported titanium-containing catalyst systems, inorganic oxide supported organo-zirconium catalyst systems and inorganic oxide supported organo-hafnium catalyst systems.
    Type: Application
    Filed: September 26, 2001
    Publication date: March 21, 2002
    Applicant: Phillips Petroleum Company
    Inventors: Joel L. Martin, Joseph J. Bergmeister, Eric T. Hsieh, Max P. McDaniel, Elizabeth A. Benham, Steven J. Secora
  • Publication number: 20020033354
    Abstract: Particulate sorbent compositions consisting essentially of zinc ferrite, nickel and an inorganic binder, wherein the zinc ferrite and nickel of reduced valence, are provided for the desulfurization of a feedstream of cracked-gasoline or diesel fuels in a desulfurization zone by a process which comprises contacting of such feedstreams in a desulfurization zone followed by separation of the resulting low sulfur-containing stream and sulfurized sorbent and thereafter regenerating and activating the separated sorbent by reduction thereof before recycle of same to the desulfurization zone.
    Type: Application
    Filed: October 17, 2001
    Publication date: March 21, 2002
    Applicant: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6355359
    Abstract: A self supporting film having one or more layers wherein at least one layer has a percent haze of less than 17.8 and the polymer of that layer consists essentially of a polyethylene having a density of at least 0.925 grams per cc, a molecular weight distribution of no more than 4, optionally containing a fluoroelastomer, and methods for making such film are disclosed.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: March 12, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Ashish M. Sukhadia, William R. Coutant, Jim D. Byers, Louis Moore, Jr., M. Bruce Welch, Syriac J. Palackal, Kiplin D. Cowan, David C. Rohlfing, Jay Janzen, Paul J. DesLauriers, William M. Whitte
  • Patent number: 6355594
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted fluorided silica-alumina.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: March 12, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Anthony P. Eaton, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Publication number: 20020028891
    Abstract: A copolymer of ethylene and a higher alpha-olefin having broadened melt processing windows and reduced melt fracture can be produced using a chromium-containing catalyst system and a trialkyl boron cocatalyst. The polymerization process must be carefully controlled to produce a copolymer resin that easily can be made into articles of manufacture.
    Type: Application
    Filed: August 20, 2001
    Publication date: March 7, 2002
    Applicant: Phillips Petroleum Company
    Inventors: Ashish M. Sukhadia, Elizabeth A. Benham, Joseph J. Bergmeister, Rex L. Bobsein, Gerhard K. Guenther, Eric T. Hsieh, Max P. McDaniel, Steven J. Secora, Joseph S. Shveima, John D. Stewart
  • Patent number: 6353071
    Abstract: Processes are provided that produce organo-aluminoxane compositions. Said processes comprise: desiccating a first mixture, where said first mixture comprises organo-aluminoxane molecules intermixed with a solvent, to produce a first composition, where said first composition comprises organo-aluminoxane molecules; mixing said first composition with a solvent to produce a second mixture, where said second mixture comprises organo-aluminoxane molecules and said solvent; contacting said second mixture with a insolublization agent to produce said organo-aluminoxane compositions. A polymerization process using a catalyst that comprises an organo-aluminoxane composition is also provided.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: March 5, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Syriac J. Palackal, M. Bruce Welch, Rolf L. Geerts
  • Patent number: 6350422
    Abstract: A process for removing hydrogen sulfide from a fluid stream by contacting a hydrogen sulfide-containing stream with a sorbent composition wherein said sorbent composition is produced by mixing at least one zinc component which is zinc oxide or a compound convertible to zinc oxide, at least one silica component where the silica component comprises silica or a compound convertible to silica, at least one colloidal metal oxide, and optionally at least one pore generator component so as to form a mixture, extruding the mixture, sphering the resulting extrudate to form spherical particles having a size of form about 0.5 to about 15 millimeters drying the resulting spherical particles, calcining the dried particles, steaming the resulting calcined particles, sulfiding the steamed particles by contacting them with sulfides or sulfur at a temperature of about 200° C. to 1400° C.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: February 26, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Publication number: 20020022706
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra-high molecular weight ethylene homopolymer.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 21, 2002
    Applicant: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham
  • Patent number: 6346190
    Abstract: Particulate sorbent compositions consisting essentially of zinc ferrite, nickel and an inorganic binder, wherein the zinc ferrite and nickel of reduced valence, are provided for the desulfurization of a feedstream of cracked-gasoline or diesel fuels in a desulfurization zone by a process which comprises contacting of such feedstreams in a desulfurization zone followed by separation of the resulting low sulfur-containing stream and sulfurized sorbent and thereafter regenerating and activating the separated sorbent by reduction thereof before recycle of same to the desulfurization zone.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: February 12, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Publication number: 20020016258
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and a coke suppressor selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Application
    Filed: February 23, 1999
    Publication date: February 7, 2002
    Applicant: Phillips Petroleum Company
    Inventors: AN-HSIANG WU, CHARLES A. DRAKE