Patents Assigned to Photon, Inc.
  • Patent number: 10341606
    Abstract: Systems and methods of multiplexing information from a plurality of monochrome sensors/cameras is provided. The systems and methods provided can be useful to achieve pixel-level time synchronization between information acquired by different monochrome sensors/cameras that are configured to view a scene from different viewing directions.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: July 2, 2019
    Assignee: SA Photonics, Inc.
    Inventor: James Arundell Davey
  • Patent number: 10337859
    Abstract: Measurement apparatuses and methods are disclosed for generating high-precision and -accuracy gas concentration maps that can be overlaid with 3D topographic images by rapidly scanning one or several modulated laser beams with a spatially-encoded transmitter over a scene to build-up imagery. Independent measurements of the topographic target distance and path-integrated gas concentration are combined to yield a map of the path-averaged concentration between the sensor and each point in the image. This type of image is particularly useful for finding localized regions of elevated (or anomalous) gas concentration making it ideal for large-area leak detection and quantification applications including: oil and gas pipeline monitoring, chemical processing facility monitoring, and environmental monitoring.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: July 2, 2019
    Assignee: Bridger Photonics, Inc.
    Inventors: Aaron Kreitinger, Michael Thorpe
  • Patent number: 10330864
    Abstract: An optical device includes a waveguide on a base and a taper on the base. The waveguide and the taper are optically aligned such that the taper and the waveguide exchange light signals during operation of the device. The taper is configured to guide the light signals through a taper material and the waveguide is configured to guide the light signals through a waveguide medium. The taper material and the waveguide medium are different materials and/or have different indices of refraction.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 25, 2019
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Mehdi Asghari, Wei Qian, Pegah Seddighian, Bradley Jonathan Luff, Dazeng Feng, Joan Fong, Cheng-Chih Kung, Monish Sharma
  • Patent number: 10326047
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 18, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Patent number: 10326423
    Abstract: Performance of a photonic integrated circuit (PIC) is improved by using at least one electro-optic (EO) device included in the PIC to perform at least one EO conversion operation whereby an information signal is transitioned from a first signal carrier type to a second signal carrier type different from the first signal carrier type. The first and second signal carrier types are selected from the group consisting of an optical signal carrier and an electrical signal carrier. An operating bandwidth of the PIC is increased by performing electrical signal impedance matching operations directly on the at least one optical media substrate. An improved electrical impedance match is thus obtained between the EO device and a second device exclusive of the PIC.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: June 18, 2019
    Assignee: Precision Integrated Photonics, Inc.
    Inventors: Barrett Bartell, David M. Calhoun
  • Patent number: 10324264
    Abstract: Active optical cable (AOC) includes at least one optical fiber constituting a signal transmission medium and a plurality of optical data transceivers disposed at separate connector ends of the AOC assembly. The AOC includes a common laser source in a common laser hub (CLH) providing a source optical signal to the optical data transceivers. The optical data transceivers modulate the source optical signal to form modulated optical data signals. In some scenarios described herein, the CLH is disposed at an intermediate location along a length of the AOC between the separate connector ends of the AOC. Further, a central processor can be provided in the CLH to facilitate consolidated data processing operations for the plurality of optical data transceivers.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: June 18, 2019
    Assignee: Precision Integrated Photonics, Inc.
    Inventor: Thomas Benedett
  • Patent number: 10319879
    Abstract: A semiconductor structure includes a first-type semiconductor layer, a second-type semiconductor layer, a light emitting layer and a hole supply layer. The light emitting layer is disposed between the first-type semiconductor layer and the second-type semiconductor layer. The hole supply layer is disposed between the light emitting layer and the second-type semiconductor layer, and the hole supply layer includes a first hole supply layer and a second hole supply layer. The first hole supply layer is disposed between the light emitting layer and the second hole supply layer, and a chemical formula of the first hole supply layer is Alx1Iny1Ga1-x1-y1N, wherein 0?x1<0.4, and 0?y1<0.4. The second hole supply layer is disposed between the first hole supply layer and the second-type semiconductor layer, a chemical formula of the second hole supply layer is Alx2Iny2Ga1-x2-y2N, wherein 0?x2<0.4, 0?y2<0.4, and x1>x2.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: June 11, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Cheng-Hung Lin, Jeng-Jie Huang, Chi-Feng Huang
  • Publication number: 20190170500
    Abstract: A system is provided for measuring distance or displacement, comprising: first and second laser sources configured to provide first and second laser outputs; a beam combiner configured to receive and combine at least part of the first and second laser outputs into a combined laser output; a signal calibrator configured to receive at least part of the first laser output, the second laser output, or the combined laser output, and output a calibration signal; a plurality of optical paths, including a first optical path, a second optical path, the plurality of optical paths being configured to direct at least part of the combined beam onto an optical detector to produce an interference signal; and a signal processor configured to receive the interference signal and determine a pathlength difference between the first and second optical paths.
    Type: Application
    Filed: January 31, 2019
    Publication date: June 6, 2019
    Applicant: Bridger Photonics, Inc.
    Inventors: Peter Roos, Michael Thorpe, Jason Brasseur
  • Patent number: 10305243
    Abstract: The laser cavity is positioned on a substrate and includes a cavity waveguide guiding a laser light signal between a gain medium and a partial return device. The partial return device receives the laser light signal from the cavity waveguide and returns a first portion of the laser light signal to the cavity waveguide. The partial return device transmits a second portion of the laser light signal to an output waveguide. The partial return device reflects different wavelengths of the laser light signal at different intensities. Additionally, the partial return device is configured such that when the most intense wavelength of the laser light signal reflected by the partial return device is the same as a wavelength of one of modes of the laser light signal, the mode with the next longest wavelength and the mode with the next shortest wavelength are each reflected by the partial return device at an intensity greater than 80% of the intensity of the most intensely reflected wavelength.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 28, 2019
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Mehdi Asghari, Dazeng Feng
  • Patent number: 10304983
    Abstract: The system captures and concentrates sunlight for transmission to interior spaces or to a PV system. A solar collector uses arrayed refractive lenses and opposing concave focusing mirrors and a movable coupling sheet forming part of a lightguide. The transparent sheet contains small angled mirrors, where each angled mirror corresponds to a particular set of the lenses/focusing mirrors and is in the focal plane. The lightguide also includes a fluid surrounding the transparent sheet, and lower index cladding layers sandwich the fluid. The sheet is translated within the fluid by an actuator to position the angled mirrors at the focal points of the sunlight for maximum deflection of the sunlight to an edge of the lightguide for extraction to a light transmission system or to a PV system. A position sensor on the sheet provides feedback regarding the position of the angled mirrors relative to the focal points.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: May 28, 2019
    Assignee: Glint Photonics, Inc.
    Inventors: Peter Kozodoy, Christopher Gladden, Michael Pavilonis, Christopher Rhodes
  • Publication number: 20190157503
    Abstract: A light emitting device including a light emitting unit and a phosphor resin layer is provided. The light emitting unit has a top surface and a bottom surface opposite to each other. Each of the light emitting units includes two electrodes. The two electrodes are disposed on the bottom surface. The phosphor resin layer is disposed on the top surface of the light emitting unit. One side of the phosphor resin layer has a mark. One of the two electrodes is closer to the mark with respect to the other one of the two electrodes.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 23, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Cheng-Wei Hung, Chin-Hua Hung, Xun-Xain Zhan, Chuan-Yu Liu, Yun-Chu Chen, Yu-Feng Lin
  • Publication number: 20190157841
    Abstract: A laser including: a gain chip; an external cavity incorporating a Bragg grating; and a baseplate; wherein a first end of the gain chip has a high reflectivity facet forming a first end of the laser cavity; a second end of the gain chip has a low reflectivity facet; and a second part of the external cavity comprises a Bragg grating, supported by the baseplate, the temperature of the baseplate being maintained through a feedback loop; wherein the optical length of the external cavity is at least an order of magnitude greater than the optical length of the gain chip; wherein the Bragg grating is physically long and occupies a majority of the length of the external cavity and is apodized to control the sidemodes of the grating reflection.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 23, 2019
    Applicant: Morton Photonics, Inc.
    Inventor: Paul Morton
  • Publication number: 20190157840
    Abstract: A laser including: a gain chip; an external cavity incorporating a Bragg grating; and a baseplate; wherein a first end of the gain chip has a high reflectivity facet forming a first end of the laser cavity; a second end of the gain chip has a low reflectivity facet; and a second part of the external cavity comprises a Bragg grating, supported by the baseplate, the temperature of the baseplate being maintained through a feedback loop; wherein the optical length of the external cavity is at least an order of magnitude greater than the optical length of the gain chip; wherein the Bragg grating is physically long and occupies a majority of the length of the external cavity and is apodized to control the sidemodes of the grating reflection.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 23, 2019
    Applicant: Morton Photonics, Inc.
    Inventor: Paul Morton
  • Patent number: 10288805
    Abstract: A base device has a first waveguide positioned on a first base. The waveguide is at least partially defined by a ridge extending away from the first base. An auxiliary optical device has a second waveguide positioned on a second base. The second optical device is immobilized on the base device such that the second waveguide is between the first base of the first optical device and the second base of the auxiliary device. The first waveguide is optically aligned with the second waveguide such that the first waveguide and second waveguides can exchange optical signals.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: May 14, 2019
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventors: Bradley Jonathan Luff, Mehdi Asghari, Dazeng Feng
  • Patent number: 10288813
    Abstract: A platform taper is formed in an optical chip. A light-transmitting medium is attached to the optical chip after forming the platform taper in the optical chip. An waveguide taper is formed in the light-transmitting medium such that the waveguide taper and the platform taper are aligned so as to form an optical taper on the optical device.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: May 14, 2019
    Assignee: Mellanox Technologies Silicon Photonics Inc.
    Inventor: Rolf Andreas Wyss
  • Patent number: 10290755
    Abstract: Novel structures of photovoltaic cells are provided. The cells are based on nanometer or micrometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: May 14, 2019
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Publication number: 20190139932
    Abstract: A method of mass transferring electronic devices includes following steps. A wafer is provided. The wafer includes a substrate and a plurality of electronic devices. The electronic devices are arranged in a matrix on a surface of the substrate. The wafer is attached to a temporary fixing film. The wafer is cut so that the wafer is divided into a plurality of blocks. Each of the blocks includes at least a part of the electronic devices and a sub-substrate. The temporary fixing film is stretched so that the blocks on the temporary fixing film are separated from each other as the temporary fixing film is stretched. At least a part of the blocks is selected as a predetermined bonding portion, and each of the blocks in the predetermined bonding portion is transferred to a carrying substrate in sequence, so that the electronic devices in the predetermined bonding portion are bonded to the carrying substrate. The sub-substrates of the blocks are removed.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20190131490
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Application
    Filed: December 24, 2018
    Publication date: May 2, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Publication number: 20190113698
    Abstract: Embodiments of the disclosure pertain to an optical or optoelectronic transceiver comprising an optical or optoelectronic receiver, an optical or optoelectronic transmitter, a plurality of electrical devices, a housing, and a heat sink having a non-planar surface. The optical or optoelectronic receiver includes a receiver optical subassembly (ROSA). The optical or optoelectronic transmitter includes a transmitter optical subassembly (TOSA). The electrical devices are configured to provide or control one or more functions of the optical or optoelectronic receiver and the optical or optoelectronic transmitter. The housing is over and/or enclosing the optical or optoelectronic receiver and the optical or optoelectronic transmitter. The housing includes a first section and a second section, and is configured to (a) be removably insertable into a cage or socket of a host device and (b) position the first section of the housing outside the cage or socket when the housing is inserted in the cage or socket.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Applicant: Source Photonics, Inc.
    Inventors: Yu HUANG, Ping CUI, Chao TIAN, Jianhua CHEN, Shengzhong ZHANG, Wayne WAINWRIGHT
  • Patent number: 10263156
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: April 16, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting