Abstract: A video sequence may include a modality corresponding with an embedded pattern. At least one state machine detects the modality in accordance with difference signals. A signal generator generates the difference signals responsive to decision windows that define regions of interest in the video sequence. The modality may correspond with an embedded film source or other pattern types in the video sequence. Where the state machine detects more than one pattern, a single pattern is selected according to a predetermined priority. The video sequence may contain both static patterns and embedded film source patterns. The state machine discerns the presence of the embedded film source patterns notwithstanding the presence of the static patterns.
Type:
Grant
Filed:
September 29, 2006
Date of Patent:
September 21, 2010
Assignee:
Pixelworks, Inc.
Inventors:
G. Finn Wredenhagen, Gary Cheng, Kevin Ng
Abstract: A display, possibly in combination with a computer, is used to manage the shape and position of various inputs, so that the inputs can be presented in combination. Possible combinations include displaying a subset of one input with another input, either overlapping or adjacent, displaying a temporal subset of one input, and using conditions to automatically control the selection of inputs.
Abstract: I describe and claim a temporal comb filtering system and method. The temporal comb filter system includes a comb filter to temporally process separated luminance and chrominance components from an image field responsive to image data from at least one other image field and a panel to display the processed components. The comb filter includes a cross-chroma detector to detect luminance information within chrominance data from a first image field responsive to chrominance data from at least one other image field and a cross-luma detector to detect chrominance information within the luminance data from the first image field responsive to the luminance data from at least one other image field.
Abstract: A method and system for performing fuzzy logic based de-interlacing on film source fields that might be mixed with video on film. An embodiment of the invention comprises an adaptive de-interlacer by weighing between merge operation and interpolation operation in the case of occurring video on film motion object. A weighing factor is generated from video on film pattern based on fuzzy logic inference rules. This weighing factor specifies the weighting between merging and interpolating in assigning the pixel values of the progressive display output.
Abstract: An adaptive filter calculates a target pixel from an interlaced video signal. The video signal comprises a plurality of frames, each of which comprises an even and an odd field. The filter comprises a quantized motion calculator and a filter selector. The quantized motion calculator estimates an amount of motion about the target pixel. The filter selector selects a filter in accordance with the estimated amount of motion. The filter applies a first weighting factor to a plurality of current field pixels and a second weighting factor to a plurality of previous field pixels for creating the target pixel.
Type:
Grant
Filed:
July 10, 2006
Date of Patent:
May 25, 2010
Assignee:
Pixelworks, Inc.
Inventors:
Finn G. Wredenhagen, Gary Cheng, Soo Jang, Lance Greggain
Abstract: An image processing circuit includes a processor that receives an encoded portion of a first version of an image. The processor decodes this encoded portion directly into a decoded portion of a second version of the image, the second version having a resolution that is different than the resolution of the first version. Therefore, such an image processing circuit can decode an encoded hi-res version of an image directly into a decoded lo-res version of the image. Alternatively, the image processing circuit includes a processor that modifies a motion vector associated with a portion of a first version of a first image. The processor then identifies a portion of a second image to which the modified motion vector points, the second image having a different resolution than the first version of the first image.
Type:
Application
Filed:
October 23, 2009
Publication date:
May 6, 2010
Applicant:
PIXELWORKS, INC.
Inventors:
RAMACHANDRAN NATARAJAN, T. GEORGE CAMPBELL
Abstract: I describe and claim a system and method for improved keystone correction. The method comprising identifying input values associated with an image projected on the projection surface, the input values including one or more center-points on edges of a distorted projection of the image and including a plurality of corners within the distorted projection of the image, the corners corresponding to an undistorted projection of the image, determining one or more keystone scaling values responsive to the identifying, and predistorting the image responsive to the determining, the predistorted image exhibiting no distortion and aligning with the plurality of corners when projected on the projection surface.
Abstract: We describe and claim a system and method for horizontal and vertical sync detection and processing. A method comprises detecting synchronization information within a video signal, estimating stability of the video signal according to the detected synchronization information, and generating one or more synchronization signals according to the detected synchronization information and the estimated stability of the video signal.
Abstract: An embodiment may include an apparatus comprising a controller for a display system, a first look up table containing data for the controller to operate the display system, and a second look up table with data that is offset from the first look up table data to preserve memory space in the controller. An embodiment may be a method comprising storing color data in a first look up table, storing color data in at least one offset look up table, the at least one offset look up table using offset values from the first look up table, and controlling a display with the first look up table and the at least one offset look up table.
Abstract: An embodiment may include a method to convert a video signal with an analog to digital converter in a video decoder, convert an audio signal with the analog to digital converter, demodulate the audio signal with an audio demodulator and amplify the audio signal with a programmable gain amplifier before it is converted in the analog to digital converter. In an embodiment the programmable gain amplifier may receive a control signal from the audio demodulator to adjust the audio signal level. Another embodiment may provide a video decoder comprising a programmable gain controller, an analog to digital converter coupled with the programmable gain controller, the converter to digitize audio and video information, and an audio demodulator coupled with the analog to digital converter, the audio demodulator to control the programmable gain controller for an audio signal.
Abstract: We describe a processing apparatus and associated method for enhancing image color that includes a color space regional parameter storage module to store parameters of a color space region. A plurality of color space regional decision and enhancement attenuation calculation modules each calculate a color enhancement amplitude of a pixel responsive to the parameters. And a color space component enhancement module calculates a component of the color enhancement amplitude of the pixel in its color space. The processing apparatus and associated method achieve improved color enhancement in a specific region of the color space.
Abstract: We describe and claim a fuzzy logic based adaptive Y/C separation system and method. The fuzzy logic based adaptive Y/C separation system includes an adaptive Y/C separator to use fuzzy logic to separate chrominance data in a video signal, and a panel to display the chrominance data. The adaptive Y/C separator includes a plurality of filters, each to separate chrominance data in a video signal, and a blending circuit to use fuzzy logic to blend the chrominance data.
Abstract: An image processing circuit includes a processor that receives an encoded portion of a first version of an image. The processor decodes this encoded portion directly into a decoded portion of a second version of the image, the second version having a resolution that is different than the resolution of the first version. Therefore, such an image processing circuit can decode an encoded hi-res version of an image directly into a decoded lo-res version of the image. Alternatively, the image processing circuit includes a processor that modifies a motion vector associated with a portion of a first version of a first image. The processor then identifies a portion of a second image to which the modified motion vector points, the second image having a different resolution than the first version of the first image.
Type:
Grant
Filed:
July 6, 2005
Date of Patent:
December 8, 2009
Assignee:
Pixelworks, Inc.
Inventors:
Ramachandran Natarajan, T. George Campbell
Abstract: We describe a cropped and scaled picture-in-picture system and method. The video system includes a first video port to generate a first video signal portion from a first video signal, a second video port to generate a second video signal portion from a second video signal, and a video processor to generate a composite image from the first and second video signal portions.
Abstract: A projector determines horizontal and vertical tilt angles. Using the tilt angles and the inherent properties of the projector, keystone correction corner points for the image can be computed. The keystone correction corner points can be used to perform keystone correction on the image.
Abstract: The invention relates to an automatic keystone correction system and method. The system includes a projection means to project an image on a projection surface and a means for selecting a maximally distorted corner on the image. And the system includes means for moving the maximally distorted corner from a first to a second position and means for distorting image data responsive to the moving.
Abstract: The present invention provides a method and apparatus for the correction of time base errors in a video signal. The method and apparatus may combine a horizontal scaler and a time base corrector. A time base corrector in accordance with the present invention can function without locking a clock to a horizontal synchronization signal. Furthermore, a method or apparatus in accordance with the present invention may operate as a finite impulse response filter, an infinite impulse response filter, a low pass filter or an adaptive filter.
Abstract: Fuzzy logic based system and method for 3:2 pull-down film mode detection that detects whether a stream of NTSC video fields originate from film source via 3:2 pull-down technique. Fuzzy logic is used to generate a reference sequence of symbols from the stream of NTSC video fields. This reference sequence is adapted for indicating whether or not the video fields originate from film source.
Abstract: A system and method for converting a pixel rate of a digital image frame is provided. The system includes a display controller with an embedded buffer and programmable input and output buffers. The input buffer writes lines of the frame at a source pixel rate while the output pointer reads out lines of the frame at a display pixel rate thereby allowing display of an image having a source pixel rate that is different, e.g., higher, than a display pixel rate.
Abstract: We describe and claim an edge enhancement system and method. The edge enhancement system includes an edge enhancement circuit to enhance a portion of image data with enhancement data determined from the image data, and a panel to display the enhanced image data. The edge enhancement circuit includes a receiver to receive the image data, a determining circuit to determine enhancement data from the image data, and an enhancing circuit to enhance a portion of the image data with the enhancement data. In an embodiment, the enhancing circuit mathematically manipulates a portion of the image data with the enhancement data. In another embodiment, the enhancing circuit replaces a portion of the image data with the enhancement data.