Patents Assigned to Precision Energy Services, Inc.
  • Publication number: 20200299585
    Abstract: A continuous bubbling fluid bed process converts biomass feedstocks into energy/heat, engineered biochar particles (including nanoparticles) and a vapor stream of organic compounds. The products have a multitude of applications determined by the specific conditions at which the process was operated, specifically controlling: temperature, catalysts, residence time, element and compound concentrations, and withdraw of products from various points in the system. The introduction of air, steam, and various gases into the vessel at selected locations and at controlled rates enables the economic, dependable and consistent production of these products.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Applicant: Precision Energy Services, Inc.
    Inventors: Michael Oswald, Anne Schwartz
  • Publication number: 20190106637
    Abstract: A continuous bubbling fluid bed process converts biomass feedstocks into energy/heat, engineered biochar particles (including nanoparticles) and a vapor stream of organic compounds. The products have a multitude of applications determined by the specific conditions at which the process was operated, specifically controlling: temperature, catalysts, residence time, element and compound concentrations, and withdraw of products from various points in the system. The introduction of air, steam, and various gases into the vessel at selected locations and at controlled rates enables the economic, dependable and consistent production of these products.
    Type: Application
    Filed: June 5, 2018
    Publication date: April 11, 2019
    Applicant: Precision Energy Services, Inc.
    Inventors: MICHAEL OSWALD, Anne Schwartz
  • Patent number: 9885800
    Abstract: A steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: February 6, 2018
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 9885796
    Abstract: A monopole acoustic transmitter for logging-while-drilling comprising as a ring that comprises one or more piezoelectric arc segments. The ring is oriented in a plane whose normal is essentially coincident with the major axis of a logging tool in which it is disposed. The ring disposed within a recess on the outer surface of a short, cylindrical insert. The insert is inserted into a drill collar, rather than into the wall of the collar. The ring can comprise a continuous ring of piezoelectric material, or alternately arc segments or active ring segments of piezoelectric ceramic bonded to segments of other materials such as alumina to increase the frequency or heavy metals such as tungsten to reduce the frequency. The material and dimensions of the material used in-between the piezoelectric segments is chosen to alter the frequency of the ring.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: February 6, 2018
    Assignee: Precision Energy Services, Inc.
    Inventors: Medhat W. Mickael, Dale A. Jones
  • Patent number: 9841528
    Abstract: A steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: December 12, 2017
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 9771797
    Abstract: A formation tester places an isolation device, preferably a probe, in fluid communication with a formation to determine formation pressures. The tester's controller uses a pressure pre-test process to autonomously control operation. The controller measures drawdown pressure and interval as the tester draws down pressure in flowline coupled to the probe. If the drawdown pressure indicates a dry test has occurred, the process is aborted. Otherwise, the controller measures buildup pressure and interval by allowing buildup of pressure of the flowline. The controller permits this to continue until the interval is longer than the drawdown interval and/or until a rate of the buildup falls below a predetermined rate. If the buildup pressure is too tight relative to the drawdown pressure, the controller aborts the test. Eventually, the controller measures a final buildup pressure when the buildup terminates. A new drawdown rate and volume can be determined for subsequent formation tests.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: September 26, 2017
    Assignee: Precision Energy Services, Inc.
    Inventor: Jeffery James Hemsing
  • Patent number: 9581015
    Abstract: Clustering analysis is used to partition data into similarity groups based on mathematical relationships between the measured variables. These relationships (or prototypes) are derived from the specific correlation required between the measured variables (data) and an environmental property of interest. The data points are partitioned into the prototype-driven groups (i.e., clusters) based on error minimization. Once the data is grouped, quantitative predictions and sensitivity analysis of the property of interest can be derived based on the computed prototypes. Additionally, the process inherently minimizes prediction errors due to the rigorous error minimization during data clustering while avoiding overfitting via algorithm parameterization. The application used to demonstrate the power of the method is pressure gradient analysis.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 28, 2017
    Assignee: Precision Energy Services, Inc.
    Inventors: Hamed Chok, Jeffery J. Hemsing
  • Patent number: 9581580
    Abstract: This invention relates to a measurement tool and method of use, and in particular to a measurement tool for use in determining a parameter of a stationary or moving fluid. The measurement tool has been designed primarily for use in borehole formation testing. The measurement tool can measure the dielectric constant of a fluid within a pipe or surrounding the tool. The pipe or wall between the tool and the fluid is electrically insulating. The tool has pair of capacitor plates mounted adjacent to the pipe or wall, a signal generator which can deliver an alternating electrical signal to at least one of the capacitor plates, and a detector for measuring a signal dependent upon the electrical capacitance between the capacitor plates. The measurement tool can additionally measure the electrical resistivity of the fluid.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: February 28, 2017
    Assignee: Precision Energy Services, Inc.
    Inventors: Margaret Cowsar Waid, Bryan W. Kasperski, Michael Andrew Yuratich
  • Patent number: 9556679
    Abstract: A bottom hole assembly avoids damaging vibrations that can develop during directional drilling with a rotary steerable system. The assembly has a drill bit, a first collar that rotates with the bit, a rotary steerable tool that controls the bit's trajectory, and a second collar that rotates with the drill string. The first collar between the bit and the tool defines a bend that deflects the bit from the first collar's axis. During operation, this bend causes portion of the assembly to engage the borehole wall to inhibit counterclockwise (CCW) bit whirl by promoting clockwise whirl in the assembly, generating friction against the borehole wall, and dampening vibrations. By inhibiting CCW bit whirl, other damaging vibrations such as CCW whirl in the drill string can also be prevented up the borehole. Alternatively, only the second collar between the tool and the drill string may define the bend, or both collars can define bends.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 31, 2017
    Assignee: Precision Energy Services, Inc.
    Inventors: Elaine Larronde, Daryl Stroud, Jeff Johnson, Mike Spencer
  • Patent number: 9500762
    Abstract: A resistivity imager uses discrete energy pulsing to determine resistivity of a borehole. The imager has pulse generation circuitry that generates discrete energy pulses. An electrode array exposed to the borehole emits or discharges the discrete energy pulses into the formation. The variations of the formation subject the electrode to impedance levels in response to the discrete energy pulses, and measurement circuitry measures the discharge of the pulsed energy subjected to the impedances. From the measurements, control circuitry determines resistivity parameters of the formation around the borehole. These resistivity parameters can be stored in memory downhole or can be telemetered to the surface. When analyzed, the resistivity measurements can produce an image of the borehole's features, indicate borehole structures, direct geosteering of drilling, or the like.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: November 22, 2016
    Assignee: Precision Energy Services, Inc.
    Inventors: Carlos Haramboure, Macmillan Wisler
  • Patent number: 9366780
    Abstract: A steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: June 14, 2016
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 9366131
    Abstract: A downhole drilling vibration analysis involves measuring orientation data in at least two orthogonal axes downhole while drilling with a drilling assembly. For example, two orthogonal magnetometers can be used. A toolface of the drilling assembly is determined using the measured sensor data, and velocity (RPM) values for the toolface for a plurality of revolutions of the drilling assembly are determined. From these determined values, a coefficient of variation for the toolface velocity (RPM) values for the revolutions of the drilling assembly is calculated. When a pattern in found in the toolface velocity (RPM) and/or the calculated coefficient of variations exceed one or more thresholds, the processing device determines that detrimental vibrations are occurring in the drilling assembly.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 14, 2016
    Assignee: Precision Energy Services, Inc.
    Inventors: Charles Mauldin, Roger Bartel, Richard Berns
  • Patent number: 9243488
    Abstract: A drill collar assembly allows a sensor to be mounted with the same standoff from a borehole wall independent of the size of stabilizer and borehole involved. A sensor component disposes in a receptacle in the drill collar, but does not affix in the receptacle. Instead, a stabilizer fits on the drill collar and covers the receptacle, and the sensor component mounts directly to the underside of the stabilizer so the component “floats” or “suspends” in the receptacle. The sensor component can mount at a stabilizer blade so the sensor can be positioned in closer proximity to the borehole wall to measure parameters of interest. Because the drill collar and sensor component can be used in different sized boreholes, different sized stabilizers may be positioned on the drill collar to account for the different sized boreholes while the sensor still has the same standoff.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: January 26, 2016
    Assignee: PRECISION ENERGY SERVICES, INC.
    Inventor: Lance C. Pate
  • Publication number: 20150331133
    Abstract: A monopole acoustic transmitter for logging-while-drilling comprising as a ring that comprises one or more piezoelectric arc segments. The ring is oriented in a plane whose normal is essentially coincident with the major axis of a logging tool in which it is disposed. The ring disposed within a recess on the outer surface of a short, cylindrical insert. The insert is inserted into a drill collar, rather than into the wall of the collar. The ring can comprise a continuous ring of piezoelectric material, or alternately arc segments or active ring segments of piezoelectric ceramic bonded to segments of other materials such as alumina to increase the frequency or heavy metals such as tungsten to reduce the frequency. The material and dimensions of the material used in-between the piezoelectric segments is chosen to alter the frequency of the ring.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 19, 2015
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Medhat W. Mickael, Dale A. Jones
  • Patent number: 9140817
    Abstract: A steerable or non-steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resistivity in a particular azimuthal direction.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: September 22, 2015
    Assignee: PRECISION ENERGY SERVICES, INC.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 9121970
    Abstract: A monopole acoustic transmitter for logging-while-drilling comprising as a ring that comprises one or more piezoelectric arc segments. The ring is oriented in a plane whose normal is essentially coincident with the major axis of a logging tool in which it is disposed. The ring disposed within a recess on the outer surface of a short, cylindrical insert. The insert is inserted into a drill collar, rather than into the wall of the collar. The ring can comprise a continuous ring of piezoelectric material, or alternately arc segments or active ring segments of piezoelectric ceramic bonded to segments of other materials such as alumina to increase the frequency or heavy metals such as tungsten to reduce the frequency. The material and dimensions of the material used in-between the piezoelectric segments is chosen to alter the frequency of the ring.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: September 1, 2015
    Assignee: Precision Energy Services, Inc.
    Inventors: Medhat W. Mickael, Dale A. Jones
  • Patent number: 8952700
    Abstract: A method and system is provided for minimizing delays in a magnetic ranging method. Delays are minimized by establishing synchronicity between triggering of a three-axis magnetometer and energization of a solenoid assembly deployed in the borehole being drilled and the first borehole, respectively. Synchronicity enables measuring various components of the alternating magnetic field created by energization of the solenoid assembly by the magnetometer, the moment the solenoid assembly is energized. The recorded components are used for computation of steering data for drilling the second borehole relative to the first borehole. The steering data can be determined at the surface or downhole.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: February 10, 2015
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M Wisler, Robert A Aiello, Tommy L Binford, Jr., Harry M Collins, James D Elmore, John D Martin
  • Patent number: 8918288
    Abstract: Clustering analysis is used to partition data into similarity groups based on mathematical relationships between the measured variables. These relationships (or prototypes) are derived from the specific correlation required between the measured variables (data) and an environmental property of interest. The data points are partitioned into the prototype-driven groups (i.e., clusters) based on error minimization. Once the data is grouped, quantitative predictions and sensitivity analysis of the property of interest can be derived based on the computed prototypes. Additionally, the process inherently minimizes prediction errors due to the rigorous error minimization during data clustering while avoiding overfitting via algorithm parameterization. The application used to demonstrate the power of the method is pressure gradient analysis.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 23, 2014
    Assignee: Precision Energy Services, Inc.
    Inventors: Hamed Chok, Jeffery J. Hemsing
  • Publication number: 20140345947
    Abstract: A method and system is provided for minimizing delays in a magnetic ranging method. Delays are minimized by establishing synchronicity between triggering of a three-axis magnetometer and energisation of a solenoid assembly deployed in the borehole being drilled and the first borehole, respectively. Synchronicity enables measuring various components of the alternating magnetic field created by energisation of the solenoid assembly by the magnetometer, the moment the solenoid assembly is energised. The recorded components are used for computation of steering data for drilling the second borehole relative to the first borehole. The steering data can be determined at the surface or downhole.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Macmillan M. Wisler, Robert A. Aiello, Tommy L. Binford, JR., Harry M. Collins, James D. Elmore, John D. Martin
  • Patent number: 8881844
    Abstract: Disclosed herein is a system for steering the direction of a borehole advanced by cutting action of a rotary drill bit by periodically varying action of a drill bit while continuously rotating a drill string to which the drill bit is operationally attached. The steering system can include a bit perturbation device cooperating with a bent housing subsection and operationally connected to the drill string and to the drill bit. Drill bit action can be varied by periodically varying the rotation speed and/or rate of penetration of the drill bit. Periodic drill bit action results in preferential cutting of material from a predetermined arc of the borehole wall which, in turn, results in borehole deviation. Action of the drill bit can be varied independently of the rotation rate of the drill string.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: November 11, 2014
    Assignee: Precision Energy Services, Inc.
    Inventors: Steven Reid Farley, Michael Louis Larronde, Roger P. Bartel, Charles Lee Mauldin, Robert Anthony Aiello