Patents Assigned to Precision Energy Services, Inc.
  • Patent number: 8839668
    Abstract: A formation tester places an isolation device, preferably a probe, in fluid communication with a formation to determine formation pressures. The tester's controller uses a pressure pre-test process to autonomously control operation. The controller measures drawdown pressure and interval as the tester draws down pressure in flowline coupled to the probe. If the drawdown pressure indicates a dry test has occurred, the process is aborted. Otherwise, the controller measures buildup pressure and interval by allowing buildup of pressure of the flowline. The controller permits this to continue until the interval is longer than the drawdown interval and/or until a rate of the buildup falls below a predetermined rate. If the buildup pressure is too tight relative to the drawdown pressure, the controller aborts the test. Eventually, the controller measures a final buildup pressure when the buildup terminates. A new drawdown rate and volume can be determined for subsequent formation tests.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: September 23, 2014
    Assignee: Precision Energy Services, Inc.
    Inventor: Jeffery James Hemsing
  • Patent number: 8797825
    Abstract: A logging system for measuring anisotrophic properties of the materials penetrated by a borehole. A downhole or “logging tool” element of the system comprises a source section that comprises either a unipole or a dipole acoustic source. The receiver section comprises a plurality of receiver stations disposed at different axial spacings from the acoustic source. Each receiver station comprises one or more acoustic receivers. The system requires that the source and receiver sections rotate synchronously as the logging tool is conveyed along the borehole. Receiver responses are measured in a plurality of azimuthal angle segments and processed as a function of rotation angle of the tool. The logging system can be embodied as a logging-while-drilling system, a measurement-while-drilling system, and a wireline system that synchronously rotates source and receiver sections. All embodiments require that the acoustic source operate at a relatively high frequency.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 5, 2014
    Assignee: Precision Energy Services, Inc.
    Inventor: Medhat W. Mickael
  • Patent number: 8781746
    Abstract: A tool driver activates a telemetry tool when a predetermined threshold of accelerometer data measured by an accelerometer. The threshold preferably corresponds to an acceleration level expected while drilling mud is pumped at a slow pump rate through the well's drill pipe. When a fluid influx occurs during drilling, the well is shut-in, and the tool driver turns off the telemetry tool. The drill pipe and casing pressures of the shut-in well are obtained. Then, drilling mud having a first weight is pumped at a slow mud pump rate. Because the tool driver is set to activate the telemetry tool in response to accelerometer data at the slow pump rate, the telemetry tool begins sending downhole pressure data to the surface. In this way, rig operations can change the mud weight and adjust the choke line during the kill operation based on an analysis of the downhole pressure data obtained.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 15, 2014
    Assignee: Precision Energy Services, Inc.
    Inventors: Barry Schneider, Curtis Cheatham, Charles Mauldin
  • Patent number: 8735803
    Abstract: A multi-channel detector assembly for downhole spectroscopy has a reference detector unit optically coupled to a reference channel of a source and has a measurement detector unit optically coupled to a measurement channel of the source. The reference and measurement detectors detect spectral signals across a spectral range of wavelengths from the reference and measurement channels. Conversion circuitry converts the detected spectral signals into reference signals and measurement signals, and control circuitry processes the reference and measurements signals based on a form of encoding used by the source. Then, the control circuitry can control the output of spectral signals from the source based on the processed signals or scale the measurement signal to correct for source fluctuations or changes in environmental conditions.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 27, 2014
    Assignee: Precision Energy Services, Inc
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Patent number: 8604796
    Abstract: A steerable or non-steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resistivity in a particular azimuthal direction.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 10, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 8542353
    Abstract: A refractive index sensor having one or more sources, an adaptive optical element or scanner, imaging optics, a sensing optic, and one or more detectors. The scanner impinges a signal from the source into the sensing optic and onto a sensor-sample interface at sequential angles of incidence. The detector response increases dramatically to signals reflected from the interface at corresponding sequential angles of reflection equal to or greater than a critical angle. The refractive index sensor also uses an input lens between the scanner and the sensing optic and uses an output lens between the sensing optic and the detector. A processor controls the sensor and can determine index of refraction of the fluid sample based on the detector response and scan rate. The sensor can be used in several operational environments from a laboratory to a downhole tool, such as a formation tester to determine properties in a borehole environment.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: September 24, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Sean M. Christian, Jess V. Ford, Bryan Statt, Thomas Blankinship, Dennis Roessler, Christopher Cotton, Bryan W. Kasperski, Margaret C. Waid
  • Patent number: 8536516
    Abstract: A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: September 17, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Thomas Blankinship, Bryan W. Kasperski, Margaret C. Waid, Sean M. Christian
  • Publication number: 20130175438
    Abstract: Detector assembly for downhole spectroscopy includes a near-infra-red quaternary photodiode that can operate at high temperatures without cooling it to the standard operation temperature range of the photodiode. High temperature operation of the photodiode right shifts the detector assembly's responsivity curve to include wavelengths of up to 2400-nm. The photodiode has manageable dark current at temperatures even at 200° C., and it can be packaged using high temperature construction. The photodiode is operated in photovoltaic mode at high temperatures but can be operated at photoconductive mode at lower temperatures. At least partial cooling can be provided above a predetermined temperature.
    Type: Application
    Filed: May 23, 2011
    Publication date: July 11, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Jess V. Ford, Bryan W. Kasperski, Sean M. Christian, Tom Haslett, Dave Demmer, Joseph Dallas, Dave Winick
  • Patent number: 8471563
    Abstract: A steerable, magnetic dipole antenna for Measurement-While-Drilling (MWD) or Logging-While-Drilling (LWD) applications. The antenna elements use a hole arrangement in addition to grooves in a steel tool body, which is typically a drill collar. This antenna embodiment is extremely robust, meaning that does not significantly reduce the structural integrity of the tool body in which it is disposed. The antenna embodiment is also relatively wear resistant. The resultant magnetic dipole generated by this antenna is also electrically steerable in inclination angle from a common origin. A variable dipole moment inclination angle combined with independently measured tool rotation orientation during normal drilling allows the antenna to generate a magnetic dipole moment that may be directed at any three dimensional angle and from a common origin point at the centroid of the antenna. The antenna can also be embodied to be more sensitive to resitivity in a particular azimuthal direction.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: June 25, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Lance Pate
  • Patent number: 8436296
    Abstract: A downhole fluid analysis tool has a tool housing and a fluid analysis device. The tool housing is deployable downhole and has at least one flow passage for a fluid sample. The fluid analysis device is disposed in the tool housing relative to the flow passage. Inside the device, one or more sources generate a combined input electromagnetic signal across a spectrum of wavelengths, and a routing assembly routes generated signals into the reference and measurement signals. At least one wheel having a plurality of filters is rotated to selectively interpose one or more of the filters in the paths of the reference and measurement signals.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 7, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Sean M. Christian, Dennis Roessler, Bryan W. Kasperski, Margaret C. Waid
  • Publication number: 20130105222
    Abstract: A drill collar assembly allows a sensor to be mounted with the same standoff from a borehole wall independent of the size of stabilizer and borehole involved. A sensor component disposes in a receptacle in the drill collar, but does not affix in the receptacle. Instead, a stabilizer fits on the drill collar and covers the receptacle, and the sensor component mounts directly to the underside of the stabilizer so the component “floats” or “suspends” in the receptacle. The sensor component can mount at a stabilizer blade so the sensor can be positioned in closer proximity to the borehole wall to measure parameters of interest. Because the drill collar and sensor component can be used in different sized boreholes, different sized stabilizers may be positioned on the drill collar to account for the different sized boreholes while the sensor still has the same standoff.
    Type: Application
    Filed: October 15, 2012
    Publication date: May 2, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventor: PRECISION ENERGY SERVICES, INC.
  • Publication number: 20130096835
    Abstract: Clustering analysis is used to partition data into similarity groups based on mathematical relationships between the measured variables. These relationships (or prototypes) are derived from the specific correlation required between the measured variables (data) and an environmental property of interest. The data points are partitioned into the prototype-driven groups (i.e., clusters) based on error minimization. Once the data is grouped, quantitative predictions and sensitivity analysis of the property of interest can be derived based on the computed prototypes. Additionally, the process inherently minimizes prediction errors due to the rigorous error minimization during data clustering while avoiding overfitting via algorithm parameterization. The application used to demonstrate the power of the method is pressure gradient analysis.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Hamed Chok, Jeffery J. Hemsing
  • Publication number: 20130092439
    Abstract: Downhole drilling vibration analysis uses an angular rate sensor on a drilling assembly. During drilling operations, the sensor measures the angular rate of the drilling assembly. Processing circuitry is operatively coupled to the angular rate sensor and is configured to determine whether torsional type vibrations are occurring during drilling based on the angular rate data. Drilling operations can then be modified to overcome or mitigate the torsional type vibrations.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 18, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventor: PRECISION ENERGY SERVICES, INC.
  • Patent number: 8417456
    Abstract: Downhole drilling vibration analysis uses acceleration data measured in three orthogonal axes downhole while drilling to determine whether drilling assembly's efficiency has fallen to a point where the assembly needs to be pulled. In real or near real time, a downhole tool calculates impulse in at least one direction using the measured acceleration data over an acquisition period and determines whether the calculated impulse exceeds a predetermined acceleration threshold for the acquisition period. If the impulse exceeds the threshold, the tool pulses the impulse data to the surface where the calculated impulse is correlated to efficiency of the assembly as the drillstring is used to drill in real time. Based on the correlation, operators can determine whether to pull the assembly if excessive impulse occurs continuously over a predetermined penetration depth.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 9, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Charles Lee Mauldin, Barry Vincent Schneider, Mark Adrian Smith
  • Patent number: 8411262
    Abstract: A downhole fluid analysis tool has a housing and a flow passage for downhole fluid. A device disposed in the tool housing relative to the flow passage has a one or more sources, one or more sensing optics, one or more detectors, and control circuitry. The source generates an input signal. The sensing optic has a refractive index (RI) higher than crude oil and other expected constituents. A sensing surface of the optic optically coupled to the source interfaces with a downhole fluid. When the variable RI of the downhole fluid reaches a defined relationship to the optic's RI, the input signal interacting with the sensing surface experiences total internal reflection, and the reflected signal from the sensing surface remains in the sensing optic and reflects to a detector. The control circuitry monitors the detector's response and indicates gas break out if the response is above a threshold.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 2, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Jess V. Ford, Sean M. Christian, Bryan W. Kasperski, Tom Haslett, Dave Demmer, Margaret C. Waid, Mike Yuratich
  • Publication number: 20130069656
    Abstract: A resistivity imager uses discrete energy pulsing to determine resistivity of a borehole. The imager has pulse generation circuitry that generates discrete energy pulses. An electrode array exposed to the borehole emits or discharges the discrete energy pulses into the formation. The variations of the formation subject the electrode to impedance levels in response to the discrete energy pulses, and measurement circuitry measures the discharge of the pulsed energy subjected to the impedances. From the measurements, control circuitry determines resistivity parameters of the formation around the borehole. These resistivity parameters can be stored in memory downhole or can be telemetered to the surface. When analyzed, the resistivity measurements can produce an image of the borehole's features, indicate borehole structures, direct geosteering of drilling, or the like.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Carlos Haramboure, Macmillan Wisler
  • Publication number: 20130049773
    Abstract: This invention relates to a measurement tool and method of use, and in particular to a measurement tool for use in determining a parameter of a stationary or moving fluid. The measurement tool has been designed primarily for use in borehole formation testing. The measurement tool can measure the dielectric constant of a fluid within a pipe or surrounding the tool. The pipe or wall between the tool and the fluid is electrically insulating. The tool has pair of capacitor plates mounted adjacent to the pipe or wall, a signal generator which can deliver an alternating electrical signal to at least one of the capacitor plates, and a detector for measuring a signal dependent upon the electrical capacitance between the capacitor plates. The measurement tool can additionally measure the electrical resistivity of the fluid.
    Type: Application
    Filed: October 26, 2012
    Publication date: February 28, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventor: Precision Energy Services, Inc.
  • Publication number: 20130043076
    Abstract: A bottom hole assembly avoids damaging vibrations that can develop during directional drilling with a rotary steerable system. The assembly has a drill bit, a first collar that rotates with the bit, a rotary steerable tool that controls the bit's trajectory, and a second collar that rotates with the drill string. The first collar between the bit and the tool defines a bend that deflects the bit from the first collar's axis. During operation, this bend causes portion of the assembly to engage the borehole wall to inhibit counterclockwise (CCW) bit whirl by promoting clockwise whirl in the assembly, generating friction against the borehole wall, and dampening vibrations. By inhibiting CCW bit whirl, other damaging vibrations such as CCW whirl in the drill string can also be prevented up the borehole. Alternatively, only the second collar between the tool and the drill string may define the bend, or both collars can define bends.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: PRECISION ENERGY SERVICES, INC.
    Inventors: Daryl Stroud, Jeff Johnson, Mike Spencer, Elaine Larronde
  • Patent number: 8378908
    Abstract: An electromagnetic antenna for Measurement-While-Drilling (MWD) applications is disclosed. The antenna can include several array elements that can act alone or together in various measurement modes. The antenna elements can be disposed in tool body recesses to be protected from damage. The antenna elements can include a ferrite plate crossed or looped by independent current carrying conductors in two or more directions forming a bi-directional or crossed magnetic dipole. Although disclosed as a MWD system conveyed by a drill string, basic concepts of the system are applicable to other types of borehole conveyance.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 19, 2013
    Assignee: Precision Energy Services, Inc.
    Inventors: Macmillan M. Wisler, Larry W. Thompson, Jian-Qun Wu, Michael S. Spencer
  • Patent number: RE45226
    Abstract: A gamma ray detector assembly for a borehole logging system that requires the measure of gamma radiation with optimized gamma ray energy resolution and with fast emission times required to obtain meaningful measurements in high radiation fields. The detector assembly comprises a lanthanum bromide (LaBr3) scintillation crystal and a digital spectrometer that cooperates with the crystal to maximize pulse processing throughput by digital filtering and digital pile-up inspection of the pulses. The detector assembly is capable of digital pulse measurement and digital pile-up inspection with dead-time less than 600 nanoseconds per event. Pulse height can be accurately measured (corrected for pile-up effects) for 2 pulses separated by as little as 150 nanoseconds. Although the invention is applicable to virtually any borehole logging methodology that uses the measure of gamma radiation in harsh borehole conditions, the invention is particularly applicable to carbon/oxygen logging.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: November 4, 2014
    Assignee: Precision Energy Services, Inc.
    Inventor: Richard C. Odom