Abstract: Waveguides and electromagnetic cavities fabricated in hyperuniform disordered materials with complete photonic bandgaps are provided. Devices comprising electromagnetic cavities fabricated in hyperuniform disordered materials with complete photonic bandgaps are provided. Devices comprising waveguides fabricated in hyperuniform disordered materials with complete photonic bandgaps are provided. The devices include electromagnetic splitters, filters, and sensors.
Type:
Grant
Filed:
January 3, 2018
Date of Patent:
August 10, 2021
Assignee:
The Trustees of Princeton University
Inventors:
Paul J Steinhardt, Marian Florescu, Salvatore Torquato
Abstract: Disclosed is a virtual rating device that associate online ratings with differential time costs by endowing the graphical user interface that solicited ratings from the users with “physics,” including an initial (default) slider position and friction. When ratings are associated with differential time cost, scores correlated more strongly with objective service quality. The differential time costs optimize information when proportional to the deviation from the median score. Correlations between subjective rating scores and objective service performance can be further improved by boosting time costs for reporting extreme scores. The disclosed device lowers the sample size (and therefore costs) required for obtaining reliable, averaged crowd estimates. The disclosed device improves information quality in online rating and feedback systems. By endowing a rating widget with virtual friction to increase the time cost for reporting extreme scores, one can obtain a more reliable crowd estimates of quality.
Abstract: Disclosed herein are a spherical-motion average radiant temperature sensor (SMART Sensor) system which can be used in various applications, including but not limited to, informing or controlling HVAC systems in buildings, locating and tracking people or objects, and detecting the release of gases. The system may optionally include the use of sensors other than a non-contacting temperature sensor to improve calculations and determinations made by the system.
Type:
Application
Filed:
May 30, 2019
Publication date:
July 8, 2021
Applicant:
The Trustees of Princeton University
Inventors:
Forrest MEGGERS, Nicholas HOUCHOIS, Eric TEITELBAUM
Abstract: The invention relates to compositions comprising Quorum-Sensing (QS) modulating molecules attached to a surface via a linker. This QS modulator attached surface can then be used to modulate QS, biofilm production, biofilm streamer production and/or virulence factor production. The length of the linker that attaches the QS modulating molecule to the surface as well as the surface coverage density impact QS modulation on surfaces. These QS modulator attached surfaces can be used to treat areas known to contain human pathogens notorious for causing hospital-acquired infections as well as fatal infections that occur outside of health care settings. Other surfaces that can be coated according to embodiments of the invention include abiotic materials, such as intravenous catheters, implants, medical devices, and cooling towers. Preferred microorganisms that can be treated with the compositions of the invention include, but are not limited to S. aureus and/or P. aeruginosa.
Type:
Application
Filed:
October 17, 2020
Publication date:
June 24, 2021
Applicant:
The Trustees of Princeton University
Inventors:
Bonnie L. Bassler, Howard A. Stone, Min Young Kim, Thomas William Muir, Aishan Zhao
Abstract: According to various embodiments, a method for generating one or more optimal neural network architectures is disclosed. The method includes providing an initial seed neural network architecture and utilizing sequential phases to synthesize the neural network until a desired neural network architecture is reached. The phases include a gradient-based growth phase and a magnitude-based pruning phase.
Type:
Application
Filed:
October 25, 2018
Publication date:
June 17, 2021
Applicant:
The Trustees of Princeton University
Inventors:
Xiaoliang DAI, Hongxu YIN, Niraj K. JHA
Abstract: The system and method for virtual navigation of a sound field through interpolation of the signals from an array of microphone assemblies utilizes an array of two or more higher-order Ambisonics (HOA) microphone assemblies, which measure spherical harmonic coefficients (SHCs) of the sound field from spatially-distinct vantage points, to estimate the SHCs at an intermediate listening position. First, sound sources near to the microphone assemblies are detected and located. Simultaneously, the desired listening position is received. Only the microphone assemblies that are nearer to said desired listening position than to any near sources are considered valid for interpolation. The SHCs from these valid microphone assemblies are then interpolated using a combination of weighted averaging and linear translation filters. The result is an estimate of the SHCs that would have been captured by a HOA microphone assembly placed in the original sound field at the desired listening position.
Abstract: Methods, systems, and computer-readable media for measuring packet delays are provided. An input port of a network device is tapped to duplicate an input packet stream having a first packet. An output port of the network device is tapped to duplicate an output packet stream including the first packet. The duplicated input packet stream and the duplicated output packet stream is transmitted to a programmable device. The first packet in the first input packet stream is matched to the first packet in the first output packet stream. An arrival time and a departure time for the first packet is measured. The difference between the departure time of the first packet and the arrival time of the first packet is determined and the value is reported to an external collector.
Type:
Grant
Filed:
April 10, 2019
Date of Patent:
June 1, 2021
Assignees:
AT&T Intellectual Property I, L.P., The Trustees Of Princeton University
Inventors:
Yaron Koral, Tuan Duong, Steven A. Monetti, Tzuu-Yi Wang, Simon Tse, Shir Landau Feibish, Jennifer Rexford, Xiaoqi Chen
Abstract: Methods of inducing or controlling particle motion in suspensions and colloids are described. In one aspect, a method of inducing particle motion in a suspension comprises contacting the suspension with a gas phase to establish at least one interface between the gas phase and continuous phase of the suspension. One or more gases of the gas phase are transferred across the interface to provide a solute gradient in the continuous phase, the solute gradient inducing motion of the suspended particles.
Type:
Grant
Filed:
March 6, 2018
Date of Patent:
May 18, 2021
Assignee:
The Trustees of Princeton University
Inventors:
Orest Shardt, Sangwoo Shin, Suin Shim, Patrick B. Warren, Howard A. Stone
Abstract: In the present invention, a mass and heat exchange system and method are disclosed, wherein water is preferentially absorbed by a non-toxic, non-corrosive liquid desiccant after passing through a hydrophilic, non-porous membrane, and embodiments wherein mixing stages are provided to reduce the surface concentration of water at the desiccant-membrane interface are also provided.
Type:
Application
Filed:
January 19, 2021
Publication date:
May 13, 2021
Applicant:
The Trustees of Princeton University
Inventors:
Forrest MEGGERS, Jovan PANTELIC, Eric TEITELBAUM
Abstract: A method is disclosed for coating and patterning hydrogels in order to modify surface properties. The method exploits the water content of the hydrogel and the hydrophobicity of the reaction solvent to create a thin oxide adhesion layer on the hydrogel surface. This oxide adhesion layer enables rapid transformation of the hydrophilic, cell non-adhesive hydrogel into either a highly hydrophobic or a cell-adhesive hydrogel by reaction with an alkylphosphonic acid or an ?,?-diphosphonoalkane, respectively. Also disclosed are coated, patterned hydrogels and constructs comprising the coated, patterned hydrogels.
Type:
Application
Filed:
August 17, 2018
Publication date:
May 6, 2021
Applicant:
The Trustees of Princeton University
Inventors:
Jeffrey Schwartz, Jeffrey Chen, Kelly Lim
Abstract: According to various embodiments, a method for generating an optimal hidden-layer long short-term memory (H-LSTM) architecture is disclosed. The H-LSTM architecture includes a memory cell and a plurality of deep neural network (DNN) control gates enhanced with hidden layers. The method includes providing an initial seed H-LSTM architecture, training the initial seed H-LSTM architecture by growing one or more connections based on gradient information and iteratively pruning one or more connections based on magnitude information, and terminating the iterative pruning when training cannot achieve a predefined accuracy threshold.
Type:
Application
Filed:
March 14, 2019
Publication date:
May 6, 2021
Applicant:
The Trustees of Princeton University
Inventors:
Xiaoliang DAI, Hongxu YIN, Niraj K. JHA
Abstract: An adaptive cognitive prosthetic that learns to replace neural function that was lost due to a brain injury or disease is described herein. In some embodiments, an adaptive cognitive prosthetic comprises a processing unit for converting input data from an input assembly into a cognitive variable and selecting a stimulation pattern for conveying the cognitive variable. The processing unit employs an adaptive algorithm to assemble the stimulation pattern by combination of subset stimulation patterns, the combination of subset stimulation patterns learned by the adaptive algorithm through error analysis.
Abstract: A method for making a fuel includes reacting a conjugated diene or a mixture of conjugated dienes with a catalyst selected from the group consisting of a low valent iron catalyst stabilized with a pyridineimine ligand, an iron precatalyst coordinated to the pyridineimine ligand that is activated with a reducing agent, a low oxidation state Fe complex stabilized with a pyridineimine ligand and a coordinating ligand, and combinations thereof, thereby forming a substituted cyclooctadiene. The substituted cyclooctadiene is then hydrogenated, thereby forming cyclooctane fuel.
Type:
Grant
Filed:
August 16, 2019
Date of Patent:
April 20, 2021
Assignees:
The United States of America, as Represented by the Secretary of the Navy, The Trustees of Princeton University
Inventors:
Benjamin G. Harvey, Kyle E. Rosenkoetter, Paul Chirik, C. Rose Kennedy
Abstract: In one aspect, phosphine compounds comprising three adamantyl moieties (PAd3) and associated synthetic routes are described herein. Each adamantyl moiety may be the same or different. For example, each adamantyl moiety (Ad) attached to the phosphorus atom can be independently selected from the group consisting of adamantane, diamantane, triamantane and derivatives thereof. Transition metal complexes comprising PAd3 ligands are also provided for catalytic synthesis including catalytic cross-coupling reactions.
Abstract: Provided are astexin-1, astexin-2 and astexin-3 lasso peptides, which are based on sequences identified in Asticaccaulis excentricus, and methods of making and using same. Astexin-1 is highly polar, in contrast to many lasso peptides that are primarily hydrophobic, and has modest antimicrobial activity against Caulobacter crescentus, a bacterium related to Asticaccaulis excentricus. The solution structure of astexin-1 was determined, revealing a unique topology that is stabilized by hydrogen bonding between segments of the peptide. Astexins-2 and -3 are intracellular lasso peptides.
Abstract: According to various embodiments, a system for accessing video content is disclosed. The system includes one or processors on a video hosting platform for hosting the video content, where the processors are configured to generate an automated transcription of the video content and apply text clustering modules based on a trained neural network to segment the video content.
Abstract: Scalable quantum dot devices and methods are described. An example quantum dot device may comprise one or more repeated cells of a repeating quantum dot structure. The repeated cells may be arranged as a linear array of quantum dots. A single repeated cell may comprise a plurality of quantum dots. The repeated cells may be configured to cause movement of a single electron between adjacent quantum dots. A repeated cell may also comprise a charge sensor for readout of the plurality of quantum dots.
Type:
Grant
Filed:
December 17, 2018
Date of Patent:
April 13, 2021
Assignee:
The Trustees of Princeton University
Inventors:
Jason Petta, David Zajac, Thomas Hazard
Abstract: Occupancy detection is an increasingly important part of building control logic, as new systems and control logic greatly benefit from human-in-the-loop sensing. Current approaches such as CO2 monitoring, acoustic detection, and PIR based motion detection are limited in scope, as these variables are a proxy for occupancy, and at best can be roughly correlated to occupancy, and cannot reliably provide a count of the number of occupants. The disclosed sensor uses thermal information that is continually being emitted by human occupants and optical processing to count and spatially resolve the location of occupants in a room, allowing ventilation flow rates to be properly controlled and directed, if enabled. Occupant detection and counting cheaply and reliably without moving parts is the holy grail of building controls at the moment, which are the basic design principles behind the disclosed inexpensive, static, and stable thermographic occupancy detection sensor.
Type:
Application
Filed:
May 11, 2018
Publication date:
March 18, 2021
Applicant:
The Trustees of Princeton University
Inventors:
Forrest MEGGERS, Jake READ, Eric TEITELBAUM, Nicholas B. HOUCHOIS