Abstract: A system for tracking a product from origin to destination is disclosed. The system includes a probe that comprises two plates, a power source and a processor. The power source is controlled by the processor to produce an oscillating output at the plates. Using the oscillating voltage, the probe interrogates a device through capacitive coupling. The device includes a control unit, a memory unit, and first and second materials physically associated with the device for communication using capacitive coupling. Information associated with the device is transferred from the device to the probe through capacitive coupling between the first and second materials and the first and second plates, respectively.
Abstract: Virtual dipole signal amplification for in-body devices, such as implantable and ingestible devices, is provided. Aspects of the in-body deployable antennas of the invention include antennas configured to go from a first configuration to a second configuration following placement in a living body, e.g., via ingestion or implantation. Embodiments of the in-body devices are configured to emit a detectable signal upon contact with a target physiological site. Also provided are methods of making and using the devices of the invention.
Type:
Application
Filed:
January 22, 2014
Publication date:
October 16, 2014
Applicant:
Proteus Digital Health, Inc.
Inventors:
Hooman Hafezi, Benedict Costello, Timothy Robertson, Maria Casillas Holen
Abstract: Ingestible event marker systems that include an ingestible event marker (i.e., an IEM) and a personal signal receiver are provided. Embodiments of the IEM include an identifier, which may or may not be present in a physiologically acceptable carrier. The identifier is characterized by being activated upon contact with a target internal physiological site of a body, such as digestive tract internal target site. The personal signal receiver is configured to be associated with a physiological location, e.g., inside of or on the body, and to receive a signal the IEM. During use, the IEM broadcasts a signal which is received by the personal signal receiver.
Type:
Grant
Filed:
February 1, 2008
Date of Patent:
October 14, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Timothy Robertson, George Savage, Mark Zdeblick, Yashar Behzadi, Benedict Costello, Jeremy Frank, Hooman Hafezi, Tariq Haniff, David O'Reilly
Abstract: Compositions, systems and methods that allow for the detection of the actual physical delivery of a pharmaceutical agent to a body are provided. Embodiments of the compositions include an identifier and an active agent. The invention finds use in a variety of different applications, including but not limited to, monitoring of therapeutic regimen compliance, tracking the history of pharmaceutical agents, etc.
Type:
Grant
Filed:
April 28, 2006
Date of Patent:
September 30, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Mark Zdeblick, Andrew Thompson, Aleksandr Pikelny, Timothy Robertson, Hooman Hafezi
Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also be associated with food and communicate data about ingestion of food material to a receiver.
Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can be used in a variety of different applications, including as components of ingestible identifiers, such as may be found in ingestible event markers, e.g., pharma-informatics enabled pharmaceutical compositions.
Type:
Grant
Filed:
June 3, 2011
Date of Patent:
August 26, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Mark Zdeblick, Timothy Robertson, Aleksandr Pikelny, Hooman Hafezi
Abstract: Receivers, which may be external or implantable, are provided. Aspects of receivers of the invention include the presence of one or more of: a high power-low power module; an intermediary module; a power supply module configured to activate and deactivate one or more power supplies to a high power processing block; a serial peripheral interface bus connecting master and slave blocks; and a multi-purpose connector. Receivers of the invention may be configured to receive a conductively transmitted signal. Also provided are systems that include the receivers, as well as methods of using the same. Additionally systems and methods are disclosed for using a receiver for coordinating with dosage delivery systems.
Type:
Application
Filed:
April 30, 2013
Publication date:
August 21, 2014
Applicant:
Proteus Digital Health, Inc
Inventors:
Timothy L. Robertson, Fataneh Omidvar, Yashar Behzadi, Lawrence Arne, Kenneth Rowberry, James Hutchison, Robert Leichner, George Savage, Andrew Thompson, Mark Zdeblick, Marc Kreidler, Hooman Hafezi, Robert Duck
Abstract: Aspects of the invention include multi-mode communication ingestible event marker devices. Ingestible event marker devices of the invention include an ingestible component comprising a conductive communication module and at least one additional non-conductive communication module. The non-conductive communication module may be integrated with the ingestible component or at least a portion or all of the non-conductive communication module may be associated with a packaging component of the ingestible event marker device. Additional aspects of the invention include systems that include the devices and one or more receivers, as well as methods of using the same.
Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.
Type:
Grant
Filed:
July 11, 2011
Date of Patent:
August 12, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
Abstract: Solid-state thin-film capacitors are provided. Aspects of the solid-state thin-film capacitors include a first electrode layer of a transition metal, a dielectric layer of an oxide of the transition metal, and a second electrode layer of a metal oxide. Also provided are methods of making the solid-state thin-film capacitors, as well as devices that include the same. The capacitor may have one or more cathodic arc produced structures, i.e., structures produced using a cathodic arc deposition process. The structures may be stress-free metallic structures, porous layers and layers displaying crenulations. Aspects of the invention further include methods of producing capacitive structures using chemical vapor deposition and/or by sputter deposition.
Abstract: A system and method are provided for securing an ingestible electronic device to a pharmaceutical product without damaging the ingestible electronic device. The product includes the ingestible electronic device being placed on the product in accordance with one aspect of the present invention. In accordance with another aspect of the present invention, the ingestible electronic device is placed inside the product. Various embodiments are disclosed in accordance with the present invention for protecting and/or coating of the electronic marker as well as securing the ingestible electronic device onto the product.
Type:
Grant
Filed:
December 2, 2010
Date of Patent:
July 22, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Hooman Hafezi, Robert Duck, Timothy Robertson, Benedict Costello
Abstract: An ingestible therapy activator system and method are provided. In one aspect, the ingestible therapy activator includes an ingestible device having an effector module to send an effector instruction and a responder module associated with a therapeutic device. The responder module may receive and process the effector instruction, resulting in a response by the therapeutic device. Examples of responses by therapeutic device include activating a therapy, deactivating a therapy, modulating a therapy, and discontinuing a therapy.
Type:
Application
Filed:
February 26, 2014
Publication date:
June 26, 2014
Applicant:
Proteus Digital Health, Inc.
Inventors:
MARK ZDEBLICK, MARC JENSEN, OLIVIER COLLIOU, ANGELA STRAND
Abstract: This invention has as its object a method for releasing a product by subjecting a compound of Formula (II?): R?7R?8(HX)C1-C2(YH)R?9R?10 to a chemical oxidation that cleaves the bond C1-C2 to obtain the product. In the compound of Formula (II?): R?7 to R?10, which are identical or different, correspond to a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted functional group; X and Y, which are identical or different, are an oxygen atom, a sulfur atom, or an amine of Formula —NR11R12, wherein R11 is a hydrogen atom, an alkyl group, or a substituted or unsubstituted aryl group, and R12 is not a hydrogen atom. The invention also has as its object a method for releasing a product that comprises, before the chemical oxidation stage, a first step for preparing the compound of Formula (II?). The released product can be a volatile molecule or an active substance or else a specific product.
Abstract: Implantable stimulation devices are provided. Aspects of the devices include a multiplexed multi-electrode component configured for neural stimulation. The multiplexed multi-electrode component includes two or more individually addressable satellite electrode structures electrically coupled to a common conductor. The satellite structures include a hermetically sealed integrated circuit controller operatively coupled to one or more electrodes. Also provided are systems that include the devices of the invention, as well as methods of using the systems and devices in a variety of different applications.
Type:
Grant
Filed:
May 24, 2011
Date of Patent:
May 27, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Mark Zdeblick, Todd Thompson, Marc Jensen, Olivier Colliou, Angela Strand
Abstract: The system of the present invention includes an implantable device that can detect high and low frequency current signature. The implantable device can communicate with a communication device that includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, the communication device is activated.
Type:
Grant
Filed:
July 11, 2011
Date of Patent:
May 20, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Todd Thompson, Mark Zdeblick, Yashar Behzadi, Benedict Costello, Timothy Robertson, Hooman Hafezi, George Savage
Abstract: The present invention provides for safe and reliable electronic circuitry that can be employed in ingestible compositions. The ingestible circuitry of the invention includes a solid support; a conductive element; and an electronic component. Each of the support, conductive element and electronic component are fabricated from an ingestible material. The ingestible circuitry finds use in a variety of different applications, including as components of ingestible identifiers, such as may be found in ingestible event markers, e.g., pharma-informatics enabled pharmaceutical compositions.
Type:
Grant
Filed:
November 18, 2010
Date of Patent:
May 13, 2014
Assignee:
Proteus Digital Health, Inc.
Inventors:
Hooman Hafezi, Eric J. Snyder, Benedict Costello