Patents Assigned to Quantum-Si Incorporated
-
Patent number: 12170433Abstract: Systems and methods are described for producing an amplitude-modulated laser pulse train. The laser pulse train can be used to cause fluorescence in materials at which the pulse trains are directed. The parameters of the laser pulse train are selected to increase fluorescence relative to a constant-amplitude laser pulse train. The amplitude-modulated laser pulse trains produced using the teachings of this invention can be used to enable detection of specific molecules in applications such as gene or protein sequencing.Type: GrantFiled: January 13, 2021Date of Patent: December 17, 2024Assignee: Quantum-Si IncorporatedInventors: Michael Bellos, Alexander Goryaynov, Benjamin Cipriany, Xinghua Shi, Faisal R. Ahmad
-
Patent number: 12169142Abstract: Described herein are techniques that improve the collection and readout of charge carriers in an integrated circuit. Some aspects of the present disclosure relate to integrated circuits having pixels with a plurality of charge storage regions. Some aspects of the present disclosure relate to integrated circuits configured to substantially simultaneously collect and read out charge carriers, at least in part. Some aspects of the present disclosure relate to integrated circuits having a plurality of pixels configured to transfer charge carriers between charge storage regions within each pixel substantially at the same time. Some aspects of the present disclosure relate to integrated circuits having three or more sequentially coupled charge storage regions. Some aspects of the present disclosure relate to integrated circuits capable of increased charge transfer rates.Type: GrantFiled: October 18, 2023Date of Patent: December 17, 2024Assignee: Quantum-Si IncorporatedInventors: Eric A. G. Webster, Todd Rearick, Thomas Raymond Thurston
-
Patent number: 12163888Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: GrantFiled: February 18, 2022Date of Patent: December 10, 2024Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
-
Patent number: 12159887Abstract: In some embodiments, an integrated circuit includes multiple charge storage regions configured to receive charge carriers from a photodetection region in response to a single excitation of a sample. In some embodiments, an integrated circuit includes first and second charge transfer paths configured to electrically couple a photodetection region to first and second charge storage regions, with the second charge transfer path bypassing the first charge storage region. In some embodiments, an integrated circuit includes a photodetection region configured to induce an intrinsic electric field having a vector component in at least three substantially perpendicular directions. In some embodiments, an integrated circuit includes multiple transfer gates configured to control charge carrier transfer out of a photodetection region in different directions.Type: GrantFiled: August 18, 2023Date of Patent: December 3, 2024Assignee: Quantum-Si IncorporatedInventor: Eric A. G. Webster
-
Patent number: 12152936Abstract: Described herein are techniques that improve the collection and readout of charge carriers in an integrated circuit. Some aspects of the present disclosure relate to integrated circuits having pixels with a plurality of charge storage regions. Some aspects of the present disclosure relate to integrated circuits configured to substantially simultaneously collect and read out charge carriers, at least in part. Some aspects of the present disclosure relate to integrated circuits having a plurality of pixels configured to transfer charge carriers between charge storage regions within each pixel substantially at the same time. Some aspects of the present disclosure relate to integrated circuits having three or more sequentially coupled charge storage regions. Some aspects of the present disclosure relate to integrated circuits capable of increased charge transfer rates.Type: GrantFiled: June 7, 2023Date of Patent: November 26, 2024Assignee: Quantum-Si IncorporatedInventors: Eric A. G. Webster, Todd Rearick, Thomas Raymond Thurston
-
Publication number: 20240384329Abstract: The invention includes methods and apparatus for separating mutations, especially rare and unknown mutations, using heteroduplex binding proteins. Nucleic acids may optionally be nicked at or near the mutation in order to promote heteroduplex binding protein recognition and binding. In particular, using the disclosed methods, it is possible to separate heteroduplexed nucleic acid strand pair from homoduplexed nucleic acid strand pairs having similar sequences and being at a much higher concentration. Once the heteroduplexed nucleic acids are isolated and recovered, it is straightforward to analyze the sequences of the heteroduplexed nucleic acids, e.g., using sequencing or hybrid assays.Type: ApplicationFiled: December 21, 2023Publication date: November 21, 2024Applicant: Quantum-Si IncorporatedInventors: Andrea Marziali, Milenko Despotovic, Matthew Wiggin, Joel Pel
-
Patent number: 12142619Abstract: Some embodiments relate to an integrated circuit, comprising: a pixel, comprising: a photodetection region; and a drain configured to discard charge carriers from within a semiconductor region of the pixel outside of the photodetection region. Some embodiments relate to an integrated circuit, comprising: a pixel, comprising: a photodetection region; and a drain configured to discard charge carriers from the photodetection region, wherein the drain comprises a semiconductor region and the semiconductor region is contacted by a metal contact. Some embodiments relate to an integrated circuit, comprising: a pixel, comprising: a photodetection region; and a drain configured to discard charge carriers from the photodetection region, wherein the drain comprises a semiconductor region that to which electrical contact is made through a conductive path that does not include a polysilicon electrode.Type: GrantFiled: October 30, 2020Date of Patent: November 12, 2024Assignee: Quantum-Si IncorporatedInventors: Farshid Ghasemi, Todd Rearick
-
Publication number: 20240369482Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: ApplicationFiled: March 12, 2024Publication date: November 7, 2024Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
-
Publication number: 20240353326Abstract: Some aspects relate to integrated devices for obtaining timing and/or spectral information from incident light. In some embodiments, a pixel may include one or more charge storage regions configured to receive charge carriers generated responsive to incident photons from a light source, with charge carriers stored in the charge storage region(s) indicative of spectral and timing information. In some embodiments, a pixel may include regions having different depths, each configured to generate charge carriers responsive to incident photons. In some embodiments, a pixel may include multiple charge storage regions having different depths, and one or more of the charge storage regions may be configured to receive the incident photons and generate charge carriers therein. In some embodiments, a pixel may include an optical sorting element configured to direct at least some incident photons to one charge storage region and other incident photons to another charge storage region.Type: ApplicationFiled: December 13, 2023Publication date: October 24, 2024Applicant: Quantum-Si IncorporatedInventors: Gerard Schmid, Dajiang Yang, Eric A.G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston
-
Patent number: 12123834Abstract: An active-source-pixel, integrated device capable of performing biomolecule detection and/or analysis, such as single-molecule nucleic acid sequencing, is described. An active pixel of the integrated device includes a sample well into which a sample to be analyzed may diffuse, an excitation source for providing excitation energy to the sample well, and a sensor configured to detect emission from the sample. The sensor may comprise two or more segments that produce a set of signals that are analyzed to differentiate between and identify tags that are attached to, or associated with, the sample. Tag differentiation may be spectral and/or temporal based. Identification of the tags may be used to detect, analyze, and/or sequence the biomolecule.Type: GrantFiled: June 12, 2020Date of Patent: October 22, 2024Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid
-
Patent number: 12123772Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit includes a charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers directly into the at least one charge carrier storage region based upon times at which the charge carriers are produced.Type: GrantFiled: June 14, 2022Date of Patent: October 22, 2024Assignee: Quantum-Si IncorporatedInventors: Thomas Raymond Thurston, Benjamin Cipriany, Joseph D. Clark, Todd Rearick, Keith G. Fife
-
Publication number: 20240344122Abstract: Provided herein are methods of single-cell polypeptide and/or polynucleic acid sequencing, which facilitate the direct sequencing of a single cell without amplification. Also provided herein are compositions, kits and devices useful for the same.Type: ApplicationFiled: March 7, 2024Publication date: October 17, 2024Applicant: Quantum-Si IncorporatedInventors: Matthew Dyer, Brian Reed
-
Patent number: 12111261Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers directly into the at least one charge carrier storage region based upon times at which the charge carriers are produced.Type: GrantFiled: June 6, 2023Date of Patent: October 8, 2024Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Keith G. Fife, David M. Boisvert
-
Patent number: 12092579Abstract: Aspects of the present disclosure relate to techniques for reducing skew in an integrated device, such as a CMOS imaging device. In some aspects, multiple pixels of an integrated circuit may be configured to receive a same control signal and conduct charge carriers responsive to the control signal substantially at the same time. In some aspects, an integrated circuit may have modulated charge transfer channel voltage thresholds, such as by having different charge transfer channel lengths, and/or a doped portion configured to set a voltage threshold for charge transfer. In some aspects, an integrated circuit may have a via structure having a plurality of vias extending between continuous portions of at least two metal layers. In some aspects, an integrated circuit may include a row of pixels and a voltage source configured to provide a voltage to bias a semiconductor substrate of the integrated circuit along the row of pixels.Type: GrantFiled: January 4, 2023Date of Patent: September 17, 2024Assignee: Quantum-Si IncorporatedInventors: Eric A. G. Webster, Dajiang Yang, Xin Wang, Zhaoyu He, Changhoon Choi, Peter J. Lim, Todd Rearick
-
Patent number: 12085442Abstract: Described herein are techniques that improve the collection and readout of charge carriers in an integrated circuit. Some aspects of the present disclosure relate to integrated circuits having pixels with a plurality of charge storage regions. Some aspects of the present disclosure relate to integrated circuits configured to substantially simultaneously collect and read out charge carriers, at least in part. Some aspects of the present disclosure relate to integrated circuits having a plurality of pixels configured to transfer charge carriers between charge storage regions within each pixel substantially at the same time. Some aspects of the present disclosure relate to integrated circuits having three or more sequentially coupled charge storage regions. Some aspects of the present disclosure relate to integrated circuits capable of increased charge transfer rates.Type: GrantFiled: October 21, 2021Date of Patent: September 10, 2024Assignee: Quantum-Si IncorporatedInventors: Eric A. G. Webster, Todd Rearick, Thomas Raymond Thurston
-
Publication number: 20240295562Abstract: There is provided amino acid cleaving reagents with improved cleavage activity, allowing for more structural information to be obtained from polypeptides in sequencing reactions.Type: ApplicationFiled: October 20, 2023Publication date: September 5, 2024Applicant: Quantum-Si IncorporatedInventors: Brian Reed, Manjula Pandey
-
Publication number: 20240294972Abstract: Methods and apparatus providing for the isolation of an unknown mutation from a sample comprising wild type nucleic acids and mutated nucleic acids through the application of time-varying driving fields and periodically varying mobility-altering fields to the sample within in an affinity matrix.Type: ApplicationFiled: September 22, 2023Publication date: September 5, 2024Applicant: Quantum-Si IncorporatedInventors: Andrea Marziali, Milenko Despotovic, Joel Pel
-
Publication number: 20240296206Abstract: Methods and apparatus for predicting an association between input data in a first modality and data in a second modality using a statistical model trained to represent interactions between data having a plurality of modalities including the first modality and the second modality, the statistical model comprising a plurality of encoders and decoders, each of which is trained to process data for one of the plurality of modalities, and a joint-modality representation coupling the plurality of encoders and decoders. The method comprises selecting, based on the first modality and the second modality, an encoder/decoder pair or a pair of encoders, from among the plurality of encoders and decoders, and processing the input data with the joint-modality representation and the selected encoder/decoder pair or pair of encoders to predict the association between the input data and the data in the second modality.Type: ApplicationFiled: March 26, 2024Publication date: September 5, 2024Applicant: Quantum-Si IncorporatedInventors: Umut Eser, Michael Meyer
-
Patent number: 12078596Abstract: A hand-held bioanalytic instrument is described that can perform massively parallel sample analysis including single-molecule gene sequencing. The instrument includes a pulsed optical source that produces ultrashort excitation pulses and a compact beam-steering assembly. The beam-steering assembly provides automated alignment of excitation pulses to an interchangeable bio-optoelectronic chip that contains tens of thousands of reaction chambers or more. The optical source, beam-steering assembly, bio-optoelectronic chip, and coupling optics register to an alignment structure in the instrument that can form at least one wall of an enclosure and dissipate heat.Type: GrantFiled: July 24, 2018Date of Patent: September 3, 2024Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Benjamin Cipriany, Todd Rearick, Paul E. Glenn, Faisal R. Ahmad, Todd Roswech, Brittany Lathrop, Thomas Connolly
-
Patent number: 12065466Abstract: Aspects of the application provide methods of identifying and sequencing proteins, polypeptides, and amino acids, and compositions useful for the same. In some aspects, the application provides amino acid recognition molecules, such as amino acid binding proteins and fusion polypeptides thereof. In some aspects, the application provides amino acid recognition molecules comprising a shielding element that enhances photostability in polypeptide sequencing reactions.Type: GrantFiled: May 20, 2021Date of Patent: August 20, 2024Assignee: Quantum-Si IncorporatedInventors: Brian Reed, Manjula Pandey