Patents Assigned to QuNano AB
  • Patent number: 10263149
    Abstract: The present invention relates to nanostructured light emitting diodes, LEDs. The nanostructure LED device according to the invention comprises an array of a plurality of individual nanostructured LEDs. Each of the nanostructured LEDs has an active region wherein light is produced. The nanostructured device further comprise a plurality of reflectors, each associated to one individual nanostructured LED (or a group of nanostructured LEDs. The individual reflectors has a concave surface facing the active region of the respective individual nanostructured LED or active regions of group of nanostructured LEDs.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: April 16, 2019
    Assignee: QUNANO AB
    Inventors: Lars Ivar Samuelson, Bo Pedersen, Bjorn Jonas Ohlsson, Yourii Martynov, Steven L. Konsek, Peter Jesper Hanberg
  • Patent number: 10128394
    Abstract: The solar cell structure according to the present invention comprises a nanowire (205) that constitutes the light absorbing part of the solar cell structure and a passivating shell (209) that encloses at least a portion of the nanowire (205). In a first aspect of the invention, the passivating shell (209) of comprises a light guiding shell (210), which preferably has a high- and indirect bandgap to provide light guiding properties. In a second aspect of the invention, the solar cell structure comprises a plurality of nanowires which are positioned with a maximum spacing between adjacent nanowires which is shorter than the wavelength of the light which the solar cell structure is intended to absorbing order to provide an effective medium for light absorption. Thanks to the invention it is possible to provide high efficiency solar cell structures.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: November 13, 2018
    Assignee: QUNANO AB
    Inventors: Lars Samuelson, Martin Magnusson, Federico Capasso
  • Patent number: 10090292
    Abstract: A radial nanowire Esaki diode device includes a semiconductor core of a first conductivity type and a semiconductor shell of a second conductivity type different from the first conductivity type. The device may be a TFET or a solar cell.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: October 2, 2018
    Assignee: QUNANO AB
    Inventors: Lars-Erik Wernersson, Erik Lind, Jonas Ohlsson, Lars Samuelson, Mikeal Bjork, Claes Thelander, Anil Dey
  • Patent number: 10036101
    Abstract: The present invention provides a method and a system for forming wires (1) that enables a large scale process combined with a high structural complexity and material quality comparable to wires formed using substrate-based synthesis. The wires (1) are grown from catalytic seed particles (2) suspended in a gas within a reactor. Due to a modular approach wires (1) of different configuration can be formed in a continuous process. In-situ analysis to monitor and/or to sort particles and/or wires formed enables efficient process control.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 31, 2018
    Assignee: QUNANO AB
    Inventors: Lars Samuelson, Martin Magnusson, Knut Deppert, Magnus Heurlin
  • Patent number: 9954060
    Abstract: The present invention provides a method for aligning nanowires which can be used to fabricate devices comprising nanowires that has well-defined and controlled orientation independently on what substrate they are arranged on. The method comprises the steps of providing nanowires and applying an electrical field over the population of nanowires, whereby an electrical dipole moment of the nanowires makes them align along the electrical field. Preferably the nanowires are dispersed in a fluid during the steps of providing and aligning. When aligned, the nanowires can be fixated, preferably be deposition on a substrate. The electrical field can be utilized in the deposition. Pn-junctions or any net charge introduced in the nanowires may assist in the aligning and deposition process. The method is suitable for continuous processing, e.g. in a roll-to-roll process, on practically any substrate materials and not limited to substrates suitable for particle assisted growth.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 24, 2018
    Assignee: QUNANO AB
    Inventors: Lars Samuelson, Knut Deppert, Jonas Ohlsson, Martin Magnusson
  • Patent number: 9947831
    Abstract: A light emitting diode (LED) includes a plurality of Group III-nitride nanowires extending from a substrate, at least one Group III-nitride pyramidal shell layer located on each of the plurality of Group III-nitride nanowires, a continuous Group III-nitride pyramidal layer located over the at least one Group III-nitride pyramidal shell layer, and a continuous pyramidal contact layer located over the continuous Group III-nitride pyramidal layer. The at least one Group III-nitride pyramidal shell layer is located in an active region of the LED. The plurality of Group III-nitride nanowires are doped one of n- or p-type. The continuous Group III-nitride pyramidal layer is doped another one of p- or n-type to form a junction with the plurality of Group III-nitride nanowires. A distance from a side portion of the continuous contact layer to the plurality of Group III-nitride nanowires is shorter than a distance of an apex of the continuous contact layer to the plurality of Group III-nitride nanowires.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 17, 2018
    Assignee: QUNANO AB
    Inventors: Werner Seifert, Damir Asoli, Zhaoxia Bi, Jonas Ohlsson, Lars Ivar Samuelson
  • Patent number: 9680039
    Abstract: A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: June 13, 2017
    Assignee: QUNANO AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Patent number: 9660136
    Abstract: The present invention relates to the growing of nitride semiconductors, applicable for a multitude of semiconductor devices such as diodes, LEDs and transistors. According to the method of the invention nitride semiconductor nanowires are grown utilizing a CVD based selective area growth technique. A nitrogen source and a metal-organic source are present during the nanowire growth step and at least the nitrogen source flow rate is continuous during the nanowire growth step. The V/III-ratio utilized in the inventive method is significantly lower than the V/III-ratios commonly associated with the growth of nitride based semiconductor.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: May 23, 2017
    Assignee: QUNANO AB
    Inventors: Werner Seifert, Damir Asoli, Zhaoxia Bi, Jonas Ohlsson, Lars Ivar Samuelson
  • Patent number: 9447520
    Abstract: The present invention provides a method and a system for forming wires (1) that enables a large scale process combined with a high structural complexity and material quality comparable to wires formed using substrate-based synthesis. The wires (1) are grown from catalytic seed particles (2) suspended in a gas within a reactor. Due to a modular approach wires (1) of different configuration can be formed in a continuous process. In-situ analysis to monitor and/or to sort particles and/or wires formed enables efficient process control.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: September 20, 2016
    Assignee: QUNANO AB
    Inventors: Lars Samuelson, Martin Magnusson, Knut Deppert, Magnus Heurlin
  • Patent number: 9318655
    Abstract: The present invention relates to light emitting diodes comprising at least one nanowire. The LED according to the invention is an upstanding nanostructure with the nanowire protruding from a substrate. A bulb with a larger diameter than the nanowire is arranged in connection to the nanowire and at an elevated position with regards to the substrate. A pn-junction is formed by the combination of the bulb and the nanowire resulting in an active region to produce light.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 19, 2016
    Assignee: QUNANO AB
    Inventors: Bo Pedersen, Lars Samuelson, Jonas Ohlsson, Patrik Svensson
  • Patent number: 9305766
    Abstract: The present invention provides a method for aligning nanowires which can be used to fabricate devices comprising nanowires that has well-defined and controlled orientation independently on what substrate they are arranged on. The method comprises the steps of providing nanowires (1) and applying an electrical field (E) over the population of nanowires (1), whereby an electrical dipole moment of the nanowires makes them align along the electrical field (E). Preferably the nanowires are dispersed in a fluid during the steps of providing and aligning. When aligned, the nanowires can be fixated, preferably be deposition on a substrate (2). The electrical field can be utilized in the deposition. Pn-junctions or any net charge introduced in the nanowires (1) may assist in the aligning and deposition process. The method is suitable for continuous processing, e.g. in a roll-to-roll process, on practically any substrate materials and not limited to substrates suitable for particle assisted growth.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 5, 2016
    Assignee: QUNANO AB
    Inventors: Lars Samuelson, Knut Deppert, Jonas Ohlsson, Martin Magnusson
  • Patent number: 9096429
    Abstract: The present invention relates to semiconductor devices comprising semiconductor nanoelements. In particular the invention relates to devices having a volume element having a larger diameter than the nanoelement arranged in epitaxial connection to the nanoelement. The volume element is being doped in order to provide a high charge carrier injection into the nanoelement and a low access resistance in an electrical connection. The nanoelement may be upstanding from a semiconductor substrate. A concentric layer of low resistivity material forms on the volume element forms a contact.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: August 4, 2015
    Assignee: QUNANO AB
    Inventors: Lars Ivar Samuelson, Patrik Svensson, Jonas Ohlsson, Truls Lowgren
  • Patent number: 9087896
    Abstract: The present invention relates to providing layers of different thickness on vertical and horizontal surfaces (15, 20) of a vertical semiconductor device (1). In particular the invention relates to gate electrodes and the formation of precision layers (28) in semiconductor structures comprising a substrate (10) and an elongated structure (5) essentially standing up from the substrate. According to the method of the invention the vertical geometry of the device (1) is utilized in combination with either anisotropic deposition or anisotropic removal of deposited material to form vertical or horizontal layers of very high precision.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: July 21, 2015
    Assignee: QUNANO AB
    Inventors: Jonas Ohlsson, Lars Samuelson, Erik Lind, Lars-Erik Wernersson, Truls Lowgren
  • Patent number: 9024338
    Abstract: The present invention relates to the growing of nitride semiconductors, applicable for a multitude of semiconductor devices such as diodes, LEDs and transistors. According to the method of the invention nitride semiconductor nanowires are grown utilizing a CVD based selective area growth technique. A nitrogen source and a metal-organic source are present during the nanowire growth step and at least the nitrogen source flow rate is continuous during the nanowire growth step. The V/III-ratio utilized in the inventive method is significantly lower than the V/III-ratios commonly associated with the growth of nitride based semiconductor.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: May 5, 2015
    Assignee: QuNano AB
    Inventors: Werner Seifert, Damir Asoli, Zhaoxia Bi, Jonas Ohlsson, Lars Ivar Samuelson
  • Patent number: 9012887
    Abstract: The present invention relates to growth of III-V semiconductor nanowires (2) on a Si substrate (3). Controlled vertical nanowire growth is achieved by a step, to be taken prior to the growing of the nanowire, of providing group III or group V atoms to a (111) surface of the Si substrate to provide a group III or group V 5 surface termination (4). A nanostructured device including a plurality of aligned III-V semiconductor nanowires (2) grown on, and protruding from, a (111) surface of a Si substrate (3) in an ordered pattern in compliance with a predetermined device layout is also presented.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 21, 2015
    Assignee: Qunano AB
    Inventors: Lars Samuelson, Jonas Ohlsson, Thomas MÃ¥rtensson, Patrik Svensson
  • Publication number: 20150072868
    Abstract: A device includes at least one nanoscale capillary and means for applying an electric voltage, said means being adapted to create an electric field at least in said capillary when said electric voltage is applied, so that, when said electric voltage is applied, a charged molecule or particle placed within the created electric field can be electrically controlled. A fluidic network structure includes the at least one nanoscale capillary. A method of using and manufacturing the fluidic network structure is also described.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 12, 2015
    Applicant: QUNANO AB
    Inventors: Jonas Ohlsson, Mikael Bjork
  • Patent number: 8890117
    Abstract: A nanowire circuit architecture is presented. The technology comprises of nanowire transistors (8,9), and optionally nanowire capacitors (12) and nanowire resistors (11), that are integrated using two levels of interconnects only (1,2). Implementations of ring-oscillators, sample-and-hold circuits, and comparators may be realized in this nanowire circuit architecture. Circuit input and circuit output as well as the transistor connections within each circuit are provided in the two levels of interconnects (1,2).
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: November 18, 2014
    Assignee: Qunano AB
    Inventor: Lars-Erik Wernersson
  • Patent number: 8796119
    Abstract: The present invention relates to semiconductor devices comprising semiconductor nanoelements. In particular the invention relates to devices having a volume element having a larger diameter than the nanoelement arranged in epitaxial connection to the nanoelement. The volume element is being doped in order to provide a high charge carrier injection into the nanoelement and a low access resistance in an electrical connection. The nanoelement may be upstanding from a semiconductor substrate. A concentric layer of low resistivity material forms on the volume element forms a contact.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: August 5, 2014
    Assignee: Qunano AB
    Inventors: Lars Ivar Samuelson, Patrik Svensson, Jonas Ohlsson, Truls Lowgren
  • Patent number: 8790462
    Abstract: A nanoengineered structure comprising an array of more than about 1000 nanowhiskers on a substrate in a predetermined spatial configuration, for use for example as a photonic band gap array, wherein each nanowhisker is sited within a distance from a predetermined site not greater than about 20% of its distance from its nearest neighbour. To produce the array, an array of masses of a catalytic material are positioned on the surface, heat is applied and materials in gaseous form are introduced such as to create a catalytic seed particle from each mass, and to grow, from the catalytic seed particle, epitaxially, a nanowhisker of a predetermined material, and wherein each mass upon melting, retains approximately the same interface with the substrate surface such that forces causing the mass to migrate across said surface are less than a holding force across a wetted interface on the substrate surface.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: July 29, 2014
    Assignee: Qunano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Thomas M. I. Martensson
  • Patent number: 8772626
    Abstract: A solar cell may include an electrically conducting substrate, a plurality of nanowhiskers extending from the substrate and a transparent electrode extending over free ends of the nanowhiskers and making electrical contact with them. Each nanowhisker may have a column with a diameter of nanometer dimension. The column may include a first p-doped semiconductor lengthwise segment and a second n-doped semiconductor lengthwise segment. The first and second semiconductor segments may have an interface between them, which forms a p-n junction. The nanowhiskers may be encapsulated in a transparent material.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 8, 2014
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson