Patents Assigned to QuNano AB
  • Publication number: 20120211727
    Abstract: The present invention relates to providing layers of different thickness on vertical and horizontal surfaces (15, 20) of a vertical semiconductor device (1). In particular the invention relates to gate electrodes and the formation of precision layers (28) in semiconductor structures comprising a substrate (10) and an elongated structure (5) essentially standing up from the substrate. According to the method of the invention the vertical geometry of the device (1) is utilized in combination with either anisotropic desposition or anisotropic removal of deposited material to form vertical or horizontal layers of very high precision.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: QuNano AB
    Inventors: Jonas Ohlsson, Lars Samuelson, Erik Lind, Lars-Erik Wernersson, Truls Löwgren
  • Patent number: 8242481
    Abstract: Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: August 14, 2012
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Lars-Ake Ledebo
  • Patent number: 8227817
    Abstract: The present invention relates to light emitting diodes comprising at least one nanowire. The LED according to the invention is an upstanding nanostructure with the nanowire protruding from a substrate. A bulb with a larger diameter than the nanowire is arranged in connection to the nanowire and at an elevated position with regards to the substrate. A pn-junction is formed by the combination of the bulb and the nanowire resulting in an active region to produce light.
    Type: Grant
    Filed: December 22, 2007
    Date of Patent: July 24, 2012
    Assignee: QuNano AB
    Inventors: Bo Pedersen, Lars Samuelson, Jonas Ohlsson, Patrik Svensson
  • Patent number: 8212237
    Abstract: The present invention provides a nanostructured memory device comprising at least one semiconductor nanowire (3) forming a current transport channel, one or more shell layers (4) arranged around at least a portion of the nanowire (3), and nano-sized charge trapping centers (10) embedded in said one or more shell layers (4), and one or more gate electrodes (14) arranged around at least a respective portion of said one or more shell layers (4). Preferably said one or more shell layers (4) are made of a wide band gap material or an insulator. The charge trapping centers (10) may be charged/written by using said one or more gate electrodes (14) and a change in an amount of charge stored in one or more of the charge trapping centers (10) alters the conductivity of the nanowire (3).
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: July 3, 2012
    Assignee: QuNano AB
    Inventors: Lars Samuelson, Claes Thelander, Jonas Ohlsson, Anders Mikkelsen
  • Publication number: 20120126200
    Abstract: Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 24, 2012
    Applicant: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Lars-Ake Ledebo
  • Patent number: 8183587
    Abstract: The present invention relates to light emitting diodes, LEDs. In particular the invention relates to a LED comprising a nanowire as an active component. The nanostructured LED according to the embodiments of the invention comprises a substrate and at an upstanding nanowire protruding from the substrate. A pn-junction giving an active region to produce light is present within the structure. The nanowire, or at least a part of the nanowire, forms a wave-guiding section directing at least a portion of the light produced in the active region in a direction given by the nanowire.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: May 22, 2012
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bo Pedersen, Bjorn Jonas Ohlsson
  • Patent number: 8178403
    Abstract: The present invention relates to providing layers of different thickness on vertical and horizontal surfaces (15, 20) of a vertical semiconductor device (1). In particular the invention relates to gate electrodes and the formation of precision layers (28) in semiconductor structures comprising a substrate (10) and an elongated structure (5) essentially standing up from the substrate. According to the method of the invention the vertical geometry of the device (1) is utilized in combination with either anisotropic deposition or anisotropic removal of deposited material to form vertical or horizontal layers of very high precision.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: May 15, 2012
    Assignee: QuNano AB
    Inventors: Jonas Ohlsson, Lars Samuelson, Erik Lind, Lars-Erik Wernersson, Truls Löwgren
  • Patent number: 8143658
    Abstract: The present invention relates to a nanostructured device for charge storage. In particular the invention relates to a charge storage device that can be used for memory applications. According to the invention the device comprise a first nanowire with a first wrap gate arranged around a portion of its length, and a charge storing terminal connected to one end, and a second nanowire with a second wrap gate arranged around a portion of its length. The charge storing terminal is connected to the second wrap gate, whereby a charge stored on the charge storing terminal can affect a current in the second nanowire. The current can be related to written (charged) or unwritten (no charge) state, and hence a memory function is established.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: March 27, 2012
    Assignee: QuNano AB
    Inventors: Lars Samuelson, Claes Thelander
  • Patent number: 8138493
    Abstract: The present invention provides an optoelectronic semiconductor device comprising at least one semiconductor nanowire, wherein the nanowire comprises a nanowire core and at least one shell layer arranged around at least a portion of the nanowire core. The nanowire core and the shell layer form a pn or pin junction that in operation provides an active region for carrier generation or carrier recombination. Quantum dots adapted to act as carrier recombination centres or carrier generation centres are arranged in the active region. By using the nanowire core as template for formation of the quantum dots and the shell layer, quantum dots of homogeneous size and uniform distribution can be obtained. Basically, the optoelectronic semiconductor device can be used for light generation or light absorption.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: March 20, 2012
    Assignee: QuNano AB
    Inventors: Jonas Ohlsson, Lars Samuelson
  • Patent number: 8120009
    Abstract: Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween. The doping of the enclosure material may be degenerate so as to create within the nanowhisker adjacent segments having very heavy modulation doping of opposite conductivity type analogous to the heavily doped regions of an Esaki diode.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: February 21, 2012
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Lars-Ake Ledebo
  • Patent number: 8084337
    Abstract: The present invention relates to growth of III-V semiconductor nanowires (2) on a Si substrate (3). Controlled vertical nanowire growth is achieved by a step, to be taken prior of the growing of the nanowire, of providing group III or group V atoms to a (111) surface of the Si substrate to provide a group III or group V 5 surface termination (4). A nanostructured device comprising a plurality of aligned III-V semiconductor nanowires (2) grown on, and protruding from, a (111) surface of a Si substrate (3) in an ordered pattern in compliance with a predetermined device layout is also presented.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: December 27, 2011
    Assignee: QuNano AB
    Inventors: Lars Samuelson, Jonas Ohlsson, Thomas Mårtensson, Patrik Svensson
  • Patent number: 8067299
    Abstract: The present invention relates to semiconductor devices comprising semiconductor nanoelements. In particular the invention relates to devices having a volume element having a larger diameter than the nanoelement arranged in epitaxial connection to the nanoelement. The volume element is being doped in order to provide a high charge carrier injection into the nanoelement and a low access resistance in an electrical connection. The nanoelement may be upstanding from a semiconductor substrate. A concentric layer of low resistivity material forms on the volume element forms a contact.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: November 29, 2011
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Patrik Svensson, Jonas Ohlsson, Truls Lowgren
  • Patent number: 8063450
    Abstract: The present invention relates to vertical nanowire transistors with a wrap-gated geometry. The threshold voltage of the vertical nanowire transistors is controlled by the diameter of the nanowire, the doping of the nanowire, the introduction of segments of heterostructures in the nanowire, the doping in shell-structures surrounding the nanowire, tailoring the work function of the gate stack, by strain engineering, by control of the dielectrica or the choice of nanowire material. Transistors with varying threshold voltages are provided on the same substrate, which enables the design of advanced circuits utilizing the shifts in the threshold voltages, similar to the directly coupled field logic.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: November 22, 2011
    Assignee: QuNano AB
    Inventors: Lars-Erik Wernersson, Erik Lind, Tomas Bryllert, Jonas Ohlsson, Truls Löwgren, Lars Samuelson, Claes Thelander
  • Patent number: 8049203
    Abstract: The present invention relates to semiconductor devices comprising semiconductor nanoelements. In particular the invention relates to devices having a volume element having a larger diameter than the nanoelement arranged in epitaxial connection to the nanoelement. The volume element is being doped in order to provide a high charge carrier injection into the nanoelement and a low access resistance in an electrical connection. The nanoelement may be upstanding from a semiconductor substrate. A concentric layer of low resistivity material forms on the volume element forms a contact.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: November 1, 2011
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Patrik Svensson, Jonas Ohlsson, Truls Lowgren
  • Publication number: 20110215297
    Abstract: A method for forming a nanowhisker of, e.g., a III-V semiconductor material on a silicon substrate, comprises: preparing a surface of the silicon substrate with measures including passivating the substrate surface by HF etching, so that the substrate surface is essentially atomically flat. Catalytic particles on the substrate surface are deposited from an aerosol; the substrate is annealed; and gases for a MOVPE process are introduced into the atmosphere surrounding the substrate, so that nanowhiskers are grown by the VLS mechanism. In the grown nanowhisker, the crystal directions of the substrate are transferred to the epitaxial crystal planes at the base of the nanowhisker and adjacent the substrate surface.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Applicant: QuNano AB
    Inventors: Lars Ivar Samuelson, Thomas M.I. Martensson
  • Publication number: 20110193055
    Abstract: Nano-engineered structures are disclosed, incorporating nanowhiskers of high mobility conductivity and incorporating pn junctions. In one embodiment, a nanowhisker of a first semiconducting material has a first band gap, and an enclosure comprising at least one second material with a second band gap encloses said nanoelement along at least part of its length, the second material being doped to provide opposite conductivity type charge carriers in respective first and second regions along the length of the of the nanowhisker, whereby to create in the nanowhisker by transfer of charge carriers into the nanowhisker, corresponding first and second regions of opposite conductivity type charge carriers with a region depleted of free carriers therebetween. The doping of the enclosure material may be degenerate so as to create within the nanowhisker adjacent segments having very heavy modulation doping of opposite conductivity type analogous to the heavily doped regions of an Esaki diode.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 11, 2011
    Applicant: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson, Lars-Åke Ledebo
  • Publication number: 20110180894
    Abstract: The present invention provides a photodiode comprising a p-i-n or pn junction at least partly formed by first and second regions (2) made of semiconductor materials having opposite conductivity type, wherein the p-i-n or pn junction comprises a light absorption region (11) for generation of charge carriers from absorbed light. One section of the p-i-n or pn junction is comprises by one or more nanowires (7) that are spaced apart and arranged to collect charge carriers generated in the light absorption region (11). At least one low doped region (10) made of a low doped or intrinsic semiconductor material provided between the nanowires (7) and one of said first region (1) and said second region (2) enables custom made light absorption region and/or avalanche multiplication region of the active region (9).
    Type: Application
    Filed: September 4, 2009
    Publication date: July 28, 2011
    Applicant: QuNano AB
    Inventors: Lars Samuelson, Federico Capasso, Jonas Ohlsson
  • Publication number: 20110140086
    Abstract: The present invention provides a nanostructured memory device comprising at least one semiconductor nanowire (3) forming a current transport channel, one or more shell layers (4) arranged around at least a portion of the nanowire (3), and nano-sized charge trapping centres (10) embedded in said one or more shell layers (4), and one or more gate electrodes (14) arranged around at least a respective portion of said one or more shell layers (4). Preferably said one or more shell layers (4) are made of a wide band gap material or an insulator. The charge trapping centres (10) may be charged/written by using said one or more gate electrodes (14) and a change in an amount of charge stored in one or more of the charge trapping centres (10) alters the conductivity of the nanowire (3).
    Type: Application
    Filed: July 2, 2009
    Publication date: June 16, 2011
    Applicant: QuNano AB
    Inventors: Lars Samuelson, Claes Thelander, Jonas Ohlsson, Anders Mikkelsen
  • Publication number: 20110143472
    Abstract: The present invention relates to the growing of nitride semiconductors, applicable for a multitude of semiconductor devices such as diodes, LEDs and transistors. According to the method of the invention nitride semiconductor nanowires are grown utilizing a CVD based selective area growth technique. A nitrogen source and a metal-organic source are present during the nanowire growth step and at least the nitrogen source flow rate is continuous during the nanowire growth step. The V/III-ratio utilized in the inventive method is significantly lower than the V/III-ratios commonly associated with the growth of nitride based semiconductor.
    Type: Application
    Filed: November 8, 2010
    Publication date: June 16, 2011
    Applicant: QuNano AB
    Inventors: Werner Seifert, Damir Asoli, Zhaoxia Bi
  • Patent number: 7960260
    Abstract: A method for forming a nanowhisker of, e.g., a III-V semiconductor material on a silicon substrate, comprises: preparing a surface of the silicon substrate with measures including passivating the substrate surface by HF etching, so that the substrate surface is essentially atomically flat. Catalytic particles on the substrate surface are deposited from an aerosol; the substrate is annealed; and gases for a MOVPE process are introduced into the atmosphere surrounding the substrate, so that nanowhiskers are grown by the VLS mechanism. In the grown nanowhisker, the crystal directions of the substrate are transferred to the epitaxial crystal planes at the base of the nanowhisker and adjacent the substrate surface.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: June 14, 2011
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Thomas M. I. Martensson