Patents Assigned to Raindance Technologies, Inc.
  • Patent number: 9364803
    Abstract: The invention generally relates to methods for forming mixed droplets. In certain embodiments, methods of the invention involve forming a droplet, and contacting the droplet with a fluid stream, wherein a portion of the fluid stream integrates with the droplet to form a mixed droplet.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: June 14, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Yevgeny Yurkovetsky, Darren Roy Link, Jonathan William Larson
  • Patent number: 9366632
    Abstract: The invention generally relates to droplet based digital PCR and methods for analyzing a target nucleic acid using the same. In certain embodiments, methods of the invention involve forming sample droplets containing, on average, a single target nucleic acid, amplifying the target in the droplets, excluding droplets containing amplicon from the target and amplicon from a variant of the target, and analyzing target amplicons.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: June 14, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Darren R. Link, Qun Zhong, Andrew Watson
  • Patent number: 9341594
    Abstract: The invention provides methods for assessing one or more predetermined characteristics or properties of a microfluidic droplet within a microfluidic channel, and regulating one or more fluid flow rates within that channel to selectively alter the predetermined microdroplet characteristic or property using a feedback control.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 17, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Benjamin J. Miller, Brian Hutchison, Andrew Wilson, Jonathan William Larson, Qun Zhong, Yevgeny Yurkovetsky, Darren R. Link, Mark Weary
  • Patent number: 9328344
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. Such methods can include labeling a library of compounds by emulsifying aqueous solutions of the compounds and aqueous solutions of unique liquid labels on a microfluidic device, which includes a plurality of electrically addressable, channel bearing fluidic modules integrally arranged on a microfabricated substrate such that a continuous channel is provided for flow of immiscible fluids, whereby each compound is labeled with a unique liquid label, pooling the labeled emulsions, coalescing the labeled emulsions with emulsions containing a specific cell or enzyme, thereby forming a nanoreactor, screening the nanoreactors for a desirable reaction between the contents of the nanoreactor, and decoding the liquid label, thereby identifying a single compound from a library of compounds.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: May 3, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Darren Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 9273308
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 1, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Darren R. Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Patent number: 9266104
    Abstract: The present invention provides thermocycling devices useful for amplification of nucleic acids in droplets. The thermocycling device utilizes the flow of one or more fluids through a main compartment at temperatures sufficient to conduct a polymerase chain reaction. Methods of amplifying nucleic acids in droplets are also provided.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 23, 2016
    Assignee: Raindance Technologies, Inc.
    Inventor: Darren Roy Link
  • Patent number: 9228229
    Abstract: The invention generally relates to droplet based digital PCR and methods for analyzing a target nucleic acid using the same. In certain embodiments, methods of the invention involve forming sample droplets containing, on average, a single target nucleic acid, amplifying the target in the droplets, excluding droplets containing amplicon from the target and amplicon from a variant of the target, and analyzing target amplicons.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 5, 2016
    Assignee: Raindance Technologies, Inc.
    Inventors: Jeffrey Olson, Darren R. Link
  • Patent number: 9176031
    Abstract: The invention provides methods for sequencing and sample preparation for sequencing and amplification.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: November 3, 2015
    Assignee: Raindance Technologies, Inc.
    Inventor: Andrew Watson
  • Patent number: 9150852
    Abstract: The invention provides barcode libraries and methods of making and using them including obtaining a plurality of nucleic acid constructs in which each construct comprises a unique N-mer and a functional N-mer and segregating the constructs into a fluid compartments such that each compartment contains one or more copies of a unique construct. The invention further provides methods for digital PCR and for use of barcode libraries in digital PCR.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 6, 2015
    Assignee: Raindance Technologies, Inc.
    Inventors: Michael Samuels, Jeffrey Charles Olson, Andrew Watson, Keith Brown, Darren Roy Link
  • Patent number: 9074242
    Abstract: The invention generally relates to droplet based digital PCR and methods for analyzing a target nucleic acid using the same. In certain embodiments, methods of the invention involve forming sample droplets containing, on average, a single target nucleic acid, amplifying the target in the droplets, excluding droplets containing amplicon from the target and amplicon from a variant of the target, and analyzing target amplicons.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: July 7, 2015
    Assignee: Raindance Technologies, Inc.
    Inventors: Jonathan William Larson, Qun Zhong, Darren Roy Link
  • Patent number: 9017623
    Abstract: Microfluidic structures and methods for manipulating fluids and reactions are provided. Such structures and methods may involve positioning fluid samples, e.g., in the form of droplets, in a carrier fluid (e.g., an oil, which may be immiscible with the fluid sample) in predetermined regions in a microfluidic network. In some embodiments, positioning of the droplets can take place in the order in which they are introduced into the microfluidic network (e.g., sequentially) without significant physical contact between the droplets. Because of the little or no contact between the droplets, there may be little or no coalescence between the droplets. Accordingly, in some such embodiments, surfactants are not required in either the fluid sample or the carrier fluid to prevent coalescence of the droplets. Structures and methods described herein also enable droplets to be removed sequentially from the predetermined regions.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: April 28, 2015
    Assignee: Raindance Technologies, Inc.
    Inventors: Seth Fraden, Galder Cristobal-Azkarate
  • Patent number: 9012390
    Abstract: Surfactants (e.g., fluorosurfactants) for stabilizing aqueous or hydrocarbon droplets in a fluorophilic continuous phase are presented. In some embodiments, fluorosurfactants include a fluorophilic tail soluble in a fluorophilic (e.g., fluorocarbon) continuous phase, and a headgroup soluble in either an aqueous phase or a lipophilic (e.g., hydrocarbon) phase. The combination of a fluorophilic tail and a headgroup may be chosen so as to create a surfactant with a suitable geometry for forming stabilized reverse emulsion droplets having a disperse aqueous or lipophilic phase in a continuous, fluorophilic phase. In some embodiments, the headgroup is preferably non-ionic and can prevent or limit the adsorption of molecules at the interface between the surfactant and the discontinuous phase. This configuration can allow the droplet to serve, for example, as a reaction site for certain chemical and/or biological reactions.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: April 21, 2015
    Assignee: Raindance Technologies, Inc.
    Inventors: Christian Holtze, David A. Weitz, John Brian Hutchison
  • Publication number: 20140329239
    Abstract: The invention generally relates to droplet based digital PCR and methods for analyzing a target nucleic acid using the same. In certain embodiments, methods of the invention involve forming sample droplets containing, on average, a single target nucleic acid, amplifying the target in the droplets, excluding droplets containing amplicon from the target and amplicon from a variant of the target, and analyzing target amplicons.
    Type: Application
    Filed: April 29, 2014
    Publication date: November 6, 2014
    Applicant: RAINDANCE TECHNOLOGIES, INC.
    Inventors: Jonathan William Larson, Qun Zhong, Darren R. Link
  • Publication number: 20140323317
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 30, 2014
    Applicant: RAINDANCE TECHNOLOGIES, INC.
    Inventors: Darren R. Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 8857462
    Abstract: The invention provides methods for assessing one or more predetermined characteristics or properties of a microfluidic droplet within a microfluidic channel, and regulating one or more fluid flow rates within that channel to selectively alter the predetermined microdroplet characteristic or property using a feedback control.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: October 14, 2014
    Assignee: Raindance Technologies, Inc.
    Inventors: Benjamin Miller, Brian Hutchison, Andrew Wilson, Jonathan Larson, Qun Zhong, Yevgeny Yurkovetsky, Darren Link, Mark Weary
  • Publication number: 20140303005
    Abstract: The invention generally relates to rare cell analysis after negative selection.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: RAINDANCE TECHNOLOGIES, INC.
    Inventors: Michael Samuels, Darren R. Link
  • Publication number: 20140295421
    Abstract: The invention generally relates to methods for quantifying an amount of enzyme molecules. Systems and methods of the invention are provided for measuring an amount of target by forming a plurality of fluid partitions, a subset of which include the target, performing an enzyme-catalyzed reaction in the subset, and detecting the number of partitions in the subset. The amount of target can be determined based on the detected number.
    Type: Application
    Filed: June 1, 2012
    Publication date: October 2, 2014
    Applicant: RAINDANCE TECHNOLOGIES, INC.
    Inventors: Darren Link, Michael L. Samuels
  • Patent number: 8841071
    Abstract: The invention generally relates to methods for sample multiplexing. In certain embodiments, methods of the invention obtaining a plurality of different reactant molecules, attaching a unique identifier to the reactant molecules, and forming a droplet including the reactant molecules.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: September 23, 2014
    Assignee: Raindance Technologies, Inc.
    Inventor: Darren Link
  • Publication number: 20140256568
    Abstract: The invention generally relates to methods for sample multiplexing. In certain embodiments, methods of the invention obtaining a plurality of different reactant molecules, attaching a unique identifier to the reactant molecules, and forming a droplet including the reactant molecules.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 11, 2014
    Applicant: Raindance Technologies, Inc.
    Inventor: Darren R. Link
  • Publication number: 20140256595
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Application
    Filed: March 26, 2014
    Publication date: September 11, 2014
    Applicant: RAINDANCE TECHNOLOGIES, INC.
    Inventors: Darren R. Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg