Patents Assigned to Research Institute of Petroleum Processing, Sinopec
  • Patent number: 6475465
    Abstract: The present invention relates to a titanium-silicalite (TS-1) molecular sieve and the method for preparation of the same, wherein each crystallite of said titanium-silicalite molecular sieve has a hollow cavity with a radial length of 5-300 nm. The benzene adsorption capacity of the molecular sieve determined at 25° C. and P/P0=0.10 for 1 hour is at least 70 mg/g; and the method for preparation of said molecular sieve comprises an acid-treatment and then an organic-base treatment of the synthesized TS-1 molecular sieve, or only an organic-base treatment. The TS-1 molecular sieve of the present invention has a relatively high reactivity and activity stability in the catalytic oxidation.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: November 5, 2002
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Min Lin, Xingtian Shu, Xieqing Wang, Bin Zhu
  • Patent number: 6444742
    Abstract: Disclosed are polyolefin/clay nanocomposites, comprising 40 to 99.9% by weight of polyolefins and 0.1 to 60% by weight of sepiolite-palygorskite type clays selected from the group essentially consisting of sepiolite and attapulgite. The nanocomposites in accordance with the present invention have excellent mechanical properties and thermal resistance. Also disclosed is a process for preparing the polyolefin/clay nanocomposites according to the present invention.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: September 3, 2002
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing SINOPEC
    Inventors: Junfeng Rong, Zhenhua Jing, Xiaoyu Hong, Wei Zhang
  • Patent number: 6416656
    Abstract: This discloses a process for catalytically cracking hydrocarbon stocks in a riser or fluidized bed reactor simultaneously to increase yields of diesel and liquefied gas. The process includes the steps of: first, charging a gasoline stock and a catalytic cracking catalyst into a lower zone of the reactor to permit contact between the catalyst and the gasoline stock and to produce a liquefied gas-rich oil-gas mixture containing reacted catalyst. The resulting liquefied gas-rich oil-gas mixture (still containing reacted catalyst) is then introduced into a reaction zone above the lower zone of the reactor. Simultaneously, at least one conventional catalytic cracking hydrocarbon feed is also fed independently into at least two sites is situated at a different height above the lower zone of the reactor. The resulting mixture is then separated in a conventional fashion.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: July 9, 2002
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jiushun Zhang, Anguo Mao, Xiaoxiang Zhong, Zhigang Zhang, Zubi Chen, Yamin Wang, Wei Wang, Shuxin Cui, Zeyu Wang, Hua Cui, Ruichi Zhang
  • Patent number: 6368996
    Abstract: An amorphous alloy catalyst for hydrogenation and its preparation method are disclosed herein. The catalyst essentially consists of nickel ranging between 60 and 98 wt %, iron ranging between 0 and 20 wt %, one doping metal element selected from the group consisting of chromium, cobalt, molybdenum, manganese and tungsten ranging between 0 and 20 wt %, and aluminum ranging between 0.5 and 30 wt % based on the weight of said catalyst, wherein the weight percentages of iron and the doping metal element component may not be zero at the same time; and just one broad diffusion peak appears at about 2 &thgr;=45±1° on the XRD patterns of the catalyst within 2 &thgr; range from 20 to 80°. The catalyst herein can be used in processes for hydrogenation of unsaturated compounds such as olefin, alkyne, aromatics, nitro, carbonyl groups, nitrile and soon, and for hydrorefining of caprolactam in particular.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 9, 2002
    Assignees: China Petroleum Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Xuhong Mu, Baoning Zong, Enze Min, Xuan Wang, Ying Wang, Xiaoxin Zhang, Xingtian Shu
  • Patent number: 6262327
    Abstract: A process for alkylation of an isoparaffin with an olefin comprising contacting an isoparaffin containing feed with an olefin-containing feed in the presence of a catalyst, said catalyst is a supported heteropoly acid catalyst, which is represented by the following chemical formula: HkYWmMo12-nO40·nH2O, wherein k is 3 or 4, Y is an atom of P, Si, Ge or As, m is a positive integer between 0-12, n is any number in the range of >0-10; the reaction temperature is at least equal to the critical temperature of isoparaffin and up to 300° C.; the reaction pressure is at least equal to the critical pressure of isoparaffin. The advantages of this process are embodied in high olefin conversion, high alkylate yield, and good retention of catalyst stability at the same time.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: July 17, 2001
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Yigong He, Fen Li, Enze Min
  • Patent number: 6261538
    Abstract: Disclosed is a series of the water-insoluble polymeric quaternary phosphonium salt-type bactericides, which consists of as active bactericidal components an amino quaternary phosphonium salt, a quaternary ammonium group-containing quaternary phosphonium salt, an amino quaternary phosphonium salt-quaternay ammonium salt, or a quaternary ammonium salt-containing quaternary phosphonium salt and quaternary ammonium salt carried on a resin carrier which can be chloromethylated. Said bactericide series has rapid and highly effective bactericidal activity, and can be used repeatedly, and used widely for sterilizing and disinfecting various fluid media such as different industrial and domestic water and the like.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: July 17, 2001
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Yongjun Chen, Xieqing Wang, Bengao Li
  • Patent number: 6210562
    Abstract: A catalytic pyrolysis process for production of ethylene and propylene from heavy hydrocarbons, comprises that heavy hydrocarbons are contacted with a pillared interlayered clay molecular sieve and/or phosphorus and aluminum or magnesium or calcium modified high silica zeolite having a structure of pentasil contained catalysts in a riser or downflow transfer line reactor in the presence of steam and catalytically pyrolysed at a temperature of 650° C. to 750° C. and a pressure of 0.15 to 0.4 MPa for a contact time of 0.2 to 5 seconds, a weight ratio of catalyst to feedstock of 15:1 to 40:1 and a weight ratio of steam to feedstock of 0.3:1 to 1:1. The yields of ethylene and propylene by the present invention are over 18 wt %.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: April 3, 2001
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Chaogang Xie, Zaiting Li, Wenyuan Shi, Xieqing Wang
  • Patent number: 6211104
    Abstract: A catalyst for catalytic pyrolysis process for the production of light olefins comprises 10˜70 wt % (based on the weight of catalyst) of clay, 5˜85 wt % of inorganic oxides and 1-50 wt % zeolite, wherein said zeolite is a mixture of 0˜25 wt % of Y type zeolite and 75˜100 wt % of phosphorus and aluminum or phosphorus and magnesium or phosphorus and calcium containing high silica zeolite having a structure of pentasil; said pentasil high silica zeolite being one selected from the group consisting of ZSM-5, ZSM-8 and ZSM-11 of zeolites containing 2˜8 wt % of phosphorus and 0.3˜3 wt % of aluminum or magnesium or calcium (calculated as the oxides), having a silica/alumina mole ratio of 15-60. The catalyst exhibits excellent activity stability and high yields of light olefin, especially for C2=. It can at the same level of yields of light olefins as that of steam thermal cracking at a lower reaction temperature than that of steam thermal cracking.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: April 3, 2001
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Zhicheng Shi, Fengmei Zhang, Shunhua Liu
  • Patent number: 6057467
    Abstract: This invention relates to an three-constituent adduct of a metallocene.an ether.an metal halide having the general formula of Cp'MQ.sub.2.RXR'.nM'Q.sub.2/n, where Cp' is a substituted or an unsubstituted dicyclopentadienyl, M is zirconium or titanium, RXR' is tetrahydrofuran or diethylether, M' is alkali metal or alkali earth metal, n=1 or 2. The adduct can be exposed to air for several hours or stored in nitrogen atmosphere for a long period of time, which is prepared by means of a simple and convenient process without further separation and purification and used directly as a catalyst for polymerization of olefins.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: May 2, 2000
    Assignees: Research Institute of Petroleum Processing, SINOPEC, China Petrochemical Corp.
    Inventors: Wei Chen, Ruen Wang, Zhenhua Jing, Weimin Wu, Zifang Guo, Xiaolan Shi, Lixin Zhang
  • Patent number: 6037301
    Abstract: The present invention discloses an amorphous alloy catalyst containing boron, which is composed of a porous carrier, a Q-B amorphous alloy, and a metal additive (M), the content of Q-B amorphous alloy together with metal additive is from 0.1 to 60 wt %, based on the total weight of the catalyst, in which the atomic ratio (Q+M)/B is 0.5-10, and the Q/M atomic ratio is 0.1-1000; wherein Q represents an metal selected from group VIII and B represents boron; and said metal additive (M) refers to those one or more metal elements which can be reduced to its/their elemental states from the corresponding salts by a solution containing BH.sub.4.sup.- with the exception that M is not the one which is used as Q. Said catalyst exhibits high catalytic hydrogenation activity.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: March 14, 2000
    Assignees: China Petro-Chemical Corporation, Research Institute of Petroleum Processing Sinopec, Fudan University
    Inventors: Enze Min, Jingfa Deng, Aizeng Ma, Wanzhen Lu
  • Patent number: 6037306
    Abstract: A hydrotreating catalyst containing molybdenum and/or tungsten for light oil distillates, said catalyst contains tungsten oxide and/or moybdenum oxide, nickel oxide and cobalt oxide supported on an alumina carrier, the content of said tungsten oxide and/or molybdenum oxide is from 4 wt % to less than 10 wt %, the content of nickel oxide 1.about.5 wt %, the content of cobalt oxide 0.01.about.1 wt %, the atom ratio of nickel-cobalt to nickel, cobalt-tungsten and/or molybdenum is 0.3.about.0.9. Compared with the prior art, the catalyst has lower metal content, but higher activity at low-temperature. The catalyst is especially suitable for use in the hydrodemercaptanization process of light oil distillates.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: March 14, 2000
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Guofu Xia, Mei Zhu, Enze Min, Yahua Shi, Mingfeng Li, Hong Nie, Zhiping Tao, Haitao Huang, Runqiang Zhang, Jian Li, Zhishan Wang, Guopeng Ran
  • Patent number: 5954944
    Abstract: A process for producing middle distillates by hydrocracking a heavy distillate oil under middle pressure uses a hydrofining catalyst and a hydrocracking catalyst in series and once-through operation. The once-through volume conversion to 350.degree. C.--products is up to 80 vol. %. The yield and selectivity of middle distillates are greater than 40 wt % and less than 50 wt %, respectively. The process is particularly suited to treat heavy distillate oil having the nitrogen content of up to 1500 ppmw, the sulfur content of up to 3.5 wt % and dry point in the boiling range of higher than 500.degree. C. to produce the feed for reforming process, jet fuel, the low sulfur content diesel, the feed for catalytic cracker and the feed for producing ethylene.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: September 21, 1999
    Assignees: China Petrochemical Corp., Research Institute of Petroleum Processing Sinopec
    Inventors: Yanping Zhang, Yulin Shi, Zhenlin Xiong, Jianwen Shi, Hong Nie, Yahua Shi, Yigin Zhu, Zhihai Hu
  • Patent number: 5951963
    Abstract: The present invention discloses a phosphorus-containing zeolite having MFI type structure. The anhydrous composition (based on the mole ratios of oxides) of the above zeolite is0.01-0.3Na.sub.2 O.Al.sub.2 O.sub.3.0.2-1.5P.sub.2 O.sub.5.30-90SiO.sub.2Said zeolite possesses a X-ray diffraction pattern listed in Table 1. The pore volume ratio of 1.0-10 nm mesopore to 10-membered ring pore is no less than 0.5. The crystal particle size of said zeolite is in the range of 0.8-2.0 micron. Said zeolite exhibits superior hydrothermal stability in catalytic conversion of hydrocarbons. Especially, when said zeolite is applied in catalytic cracking of hydrocarbons, it will enhance the crackability of large molecules, improve gasoline octane value and stability, and reduce the sulfur content in the gasoline as well.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: September 14, 1999
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Mingyuan He, Xiaoming Yang, Xingtian Shu, Jinge Luo
  • Patent number: 5789640
    Abstract: Disclosed is a process for continuous alkylation of aromatics or their derivatives in the presence of a solid acid catalyst in a liquid-solid circulating fluidized bed system, said system comprising a liquid-solid cocurrent upflow reactor, a sedimentation washing tower for the used catalyst, a liquid-solid cocurrent upflow regenerator, a sedimentation washing tower for the regenerated catalyst, and two vortical liquid-solid separators. By regeneration of the used catalyst, continuous alkylation process is achieved in this system.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: August 4, 1998
    Assignees: China Petro-Chemical Corporation, Tsinghua University, Research Institute of Petroleum Processing Sinopec
    Inventors: Yong Jin, Wugeng Liang, Zhanwen Wang, Zhiging Yu, Enze Min, Mingyuan He, Zhijian Da
  • Patent number: 5759950
    Abstract: A catalyst supported with noble metal(s) for the isomerization of alkylaromatics consists of (1) 0.1-0.4 wt % of Pt or (2) 0.1-0.4 wt % of Pt or 0.2-0.8 wt % of Pd, 0.01-0.20 wt % of Re and 0.05-0.50 wt % of Sn as active component, and 10-60 wt % of a zeolite with MOR structure, 0-15 wt % of ZSM-5 zeolite and 40-80 wt % of alumina as support.
    Type: Grant
    Filed: February 6, 1996
    Date of Patent: June 2, 1998
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Shouxi Gui, Yuzhi Hao, Lizhi Zhou, Zhenhua Jing, Yingbin Qiao, Haohui Gu, Yanqing Li, Baoyu Cheng, Jinshui Wang
  • Patent number: 5728640
    Abstract: A process for preparing a supported metallocene/aluminoxane solid catalyst comprises preparing a water-in-oil emulsion of water and an inert solvent by using an emulsifier, adding dropwise the emulsion to a solution of an organoaluminium compound in an inert solvent to carry out the reaction to obtain a suspension of the particulate aluminoxane, followed by adding a solution of a metallocene to the above suspension to support the metallocene on the aluminoxane. The solid catalyst thus obtained can be used in the polymerization and copolymerization of olefins. Polymerization can be carried out by slurry polymerization, bulk polymerization, gas phase polymerization, etc.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: March 17, 1998
    Assignee: China Petrochemical Corp. and Research Institute of Petroleum Processing Sinopec
    Inventors: Bing Lu, Jinmei Wang, Xiaoyu Hong, Zhenhua Jing
  • Patent number: 5698723
    Abstract: Disclosed is a process for the preparation of bistriphenylsilyl chromate, wherein triphenylchlorosilane, potassium dichromate and any one selected from alkali metal oxides, alkali hydroxides and alkali metal carbonates are reacted in, as solvent, a mixture of glacial acetic acid and a hydrocarbon solvent at a certain temperature, whereby bistriphenylsilyl chromate having high purity can be obtained with high yield.
    Type: Grant
    Filed: August 16, 1996
    Date of Patent: December 16, 1997
    Assignees: China Paeto-Chemical Corporation, Research Institute of Petroleum Processing SINOPEC
    Inventors: Longxiu Dai, Qiwei Duan, Hongbo Ji, Xiaoyuan Wang, Jinqiang Mo, Jinfeng Wang, Hongmei Liu, Xiuqin Li, Jiuhua Chen, Ping Gao
  • Patent number: 5670037
    Abstract: A process for producing light olefins, especially ethylene, propylene, isobutylene and isoamylene, together with high octane gasoline as by-product, comprises that petroleum hydrocarbons are contacted with phosphorus and rare earth containing high silica zeolite having a structure of pentasil catalysts and catalytically converted at a temperature of 480.degree. to 680.degree. C. and a pressure of 1.2.times.10.sup.5 to 4.0.times.10.sup.5 Pa, with a contact time of 0.1 to 6 seconds, a weight ratio of catalyst to feedstock of 4:1 to 20:1 and a weight ratio of steam to feedstock of 0.01:1 to 0.5:1.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: September 23, 1997
    Assignees: China Petro-Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Li Zaiting, Xie Chaogang, Shi Wenyuan, Jiang Fukang, Liu Shunhua, Pan Rennan, Li Shichun
  • Patent number: 5637735
    Abstract: A process for vapor phase hydrogenation of maleic anhydride and/or succinic anhydride to .gamma.-butyrolactone, comprising contacting an alcoholic solution of a feedstock anhydride with reduced Cu-Zn-Cr-Zr catalyst under the conditions of hydrogenation.
    Type: Grant
    Filed: August 9, 1995
    Date of Patent: June 10, 1997
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing SINOPEC
    Inventors: Lishan Tong, Haijing Wang, Weisun Feng, Guoqiang Gao, Xiangwei Li, Jinghui Deng, Xinjie Zhang
  • Patent number: 5358918
    Abstract: A hydrocarbon conversion catalyst for converting petroleum distillates of different boiling ranges, residue oils, and crude oils, especially the heavy hydrocarbons containing high nickel, into high quality gasoline and C.sub.3 and C.sub.4 olefins. The catalyst of the invention comprises three zeolitic active components consisting of a rare-earth-containing pentasil type high silica zeolite ZRP, a REY zeolite, and a high silica Y zeolite, in a total content of 10-40 wt % based on the total weight of the catalyst, and the remainder synthetic matrix or semi-synthetic matrix comprising 10-40 wt % silica and/or alumina binder. In the total amount of the active components, zeolite ZRP, REY, and the high silica Y are 3-50, 12-75, and 12-75 wt % respectively. The zeolite ZRP used in the catalyst is characterized in an anhydrous chemical composition of the formula 0.01-0.30 RE.sub.2 O.sub.3.0.4-1.0 Na.sub.2 O.Al.sub.2 O.sub.3.20-60 SiO.sub.
    Type: Grant
    Filed: March 12, 1993
    Date of Patent: October 25, 1994
    Assignees: China Petro-Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Lu Yukang, Huo Yongqing, Shu Xingtian, Wang Yousheng, Wang Zeyu, Zhang Shuqin, Liu Haibin, Cui Suxin