Patents Assigned to Research Institute of Petroleum Processing, Sinopec
  • Publication number: 20120115966
    Abstract: The present invention provides a process for preparing methanol, dimethyl ether, and low carbon olefins from syngas, wherein the process comprises the step of contacting syngas with a catalyst under the conditions for converting the syngas into methanol, dimethyl ether, and low carbon olefins, characterized in that, the catalyst contains an amorphous alloy consisting of a first component Al and a second component, said second component being one or more elements or oxides thereof selected from Group IA, IIIA, IVA, VA, IB, IIB, IVB, VB, VIIB, VIIB, VIII, and Lanthanide series of the Periodic Table of Elements, and said second component being different from the first component Al. According to the present process, the syngas can be converted into methanol, dimethyl ether, and low carbon olefins in a high CO conversion, a high selectivity of the target product, and high carbon availability.
    Type: Application
    Filed: November 26, 2009
    Publication date: May 10, 2012
    Applicants: Research Institute of Petroleum Processing, SINOPEC, China Petroleum & Chemical Corporation
    Inventors: Qiang Fu, Xiaoxin Zhang, Yibin Luo, Xuhong Mu, Baoning Zong
  • Patent number: 8088335
    Abstract: A conversion apparatus for catalytic cracking a hydrocarbon feed to light hydrocarbon comprises at least one riser reactor, a dense bed reactor, a disengager, and a stripper. A dense bed reactor which is separated from disengage, is employed to enforce further cracking hydrocarbon to light olefins, with low methane yield. Moreover, the spent catalysts discharged from the outlet of the dense bed reactor can be introduced into the stripper via a specific catalyst transporting channel, to maintain catalyst concentration in the dense bed reactor that can be advantageous to deeper cracking of the intermediate products to produce more light olefins, particularly propylene.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 3, 2012
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Kejia Xu, Shuandi Hou, Zhijian Da, Chaogang Xie, Jiushun Zhang, Zhanzhu Zhang
  • Publication number: 20110127192
    Abstract: The present invention relates to a hydrocracking catalyst comprising an acidic silica-alumina, an optional alumina, an effective quantity of at least one VIII Group metal component(s), an effective quantity of at least one VIB Group metal component(s) and an organic additive, wherein the organic additive is one or more selected from the group consisting of an oxygen-containing or nitrogen-containing organic compound, and the molar ratio of the organic additive to the VIII Group metal component(s) is 0.01-10. The present invention relates further to a process for producing the hydrocracking catalyst and use of the catalyst in a process for hydrocracking hydrocarbon oils. The hydrocracking catalyst provided according to the present invention shows a higher activity for aromatic hydrosaturating and ring-opening reaction, as compared with the prior art hydrocracking catalyst.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 2, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Yichao Mao, Hong Nie, Jianwei Dong, Zhenlin Xiong, Zhihai Hu, Yahua Shi, Dadong Li
  • Publication number: 20110100876
    Abstract: The present invention provides a composite solid acid catalyst consisting of from 50%-80% by weight of a porous inorganic support, from 15% to 48% by weight of a heteropoly compound loaded thereon, and from 2% to 6% by weight of an inorganic acid. The present invention further provides a process for preparing said composite solid acid catalyst and a process for conducting an alkylation reaction by using such catalyst. The composite solid acid catalyst of the present invention has the acid sites type of Brönsted acid and has an acid sites density of not less than 1.4×10?3 mol H+/g. Moreover, said composite solid acid catalyst has the homogeneous acid strength distribution, and is a solid acid catalyst having excellent performances.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 5, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum processing, Sinopec
    Inventors: Yigong HE, Zheng MAN, Xuhong MU
  • Patent number: 7923399
    Abstract: A catalyst for converting hydrocarbons includes, based on the weight of the catalyst, 1-60% by weight of a zeolite, 0.1-10% by weight of an assistant catalytic component, 5-98% by weight of a thermotolerant inorganic oxide, and 0-70% by weight of a clay in terms of the oxide. The zeolite is a MFI-structured zeolite-containing phosphor and transition metal(s) or a mixture of the zeolite and a macroporous zeolite, which comprises, based on the weight of the mixture, 75-100% by weight of said MFI-structured zeolite containing phosphor and transition metal(s) and 0-25% by weight of the macroporous zeolite. In terms of the mass of the oxide, the MFI-structured zeolite containing phosphor and transition metal(s) has the following anhydrous chemical formula: (0-0.3)Na2O.(0.3-5.5)Al2O3.(1.0-10)P2O5.(0.7-15)M1xOy.(0.01-5)M2mOn(0-10)RE2O3.(70-97)SiO2??I or (0-0.3)Na2O.(0.3-5)Al2O3.(1.0-10)P2O5.(0.7-15)MpOq.(0-10)RE2O3.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 12, 2011
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Jun Long, Zhijian Da, Huiping Tian, Zhenyu Chen, Weilin Zhang, Xingtian Shu, Jiushun Zhang, Yuxia Zhu, Yujian Liu
  • Patent number: 7919536
    Abstract: The present invention relates to a slurry bed loop reactor comprising a riser and at least one downcomer (3), wherein two ends of the riser are connected to two ends of the downcomer (3) via lines (16) and (7), respectively. The riser comprises a reaction section (1) and a settling section (2) with an increased tube diameter disposed on the reaction section (1). A gas outlet (13) exists at the top of the settling section (2). Each of the downcomers (3) is divided into a filtrate section (5) and a slurry section (6) by filter medium (4), wherein the filtrate section (5) is connected to a liquid outlet (10); two ends of the slurry section (6) are respectively connected to two ends of the riser, and the filtrate region (5) may further be connected to a back purging system.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: April 5, 2011
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Zhanzhu Zhang, Lifeng Hu, Xiaojin Tang, Shaobing Wang, Shuandi Hou, Junyi Mao, Hongliang Qu
  • Publication number: 20110073523
    Abstract: The present invention relates to a catalytic conversion process for producing more diesel and propylene, comprising contacting the feedstock oil with a catalyst having a relatively homogeneous activity in a reactor, wherein the reaction temperature, weight hourly space velocity and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from 12 to 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil; the fluid catalytic cracking gas oil is fed into the fluid catalytic cracking gas oil treatment device for further processing. Catalytic cracking, hydrogenation, solvent extraction, hydrocracking and process for producing more diesel are organically combined together, and hydrocarbons such as alkanes, alkyl side chains in the feedstocks for catalysis are selectively cracked and isomerized.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Shouye CUI, Youhao XU, Zhihai HU, Jianhong GONG, Chaogang XIE, Yun CHEN, Zhigang ZHANG, Jianwei DONG
  • Publication number: 20100326888
    Abstract: The present invention provides a catalytic cracking catalyst, processing method and use thereof. When the catalyst is added into a commercial catalytic cracking unit, it has an initial activity of not higher than 80, preferably not higher than 75, more preferably not higher than 70, a self-balancing time of 0.1-50 h, and an equilibrium activity of 35-60. Said method enables the activity and selectivity of the catalyst in the catalytic cracking unit to be more homogeneous and notably improves the selectivity of the catalytic cracking catalyst, so as to obviously reduce the dry gas and coke yields, to sufficiently use steam and to reduce the energy consumption of the FCC unit.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao XU, Shouye CUI, Jun LONG, Jianhong GONG, Zhijian DA, Jiushun ZHANG, Yuxia ZHU, Yibin LUO, Jinlian TANG
  • Publication number: 20100311569
    Abstract: The invention discloses a catalyst and a method for cracking hydrocarbons. The catalyst comprises, calculated by dry basis, 10˜65 wt % ZSM-5 zeolite, 0˜60 wt % clay, 15˜60 wt % inorganic oxide binder, 0.5˜15 wt % one or more metal additives selected from the metals of Group VIIIB and 2˜25 wt % P additive, in which the metal additive, is calculated by metal oxide and the P additive is calculated by P2O5. The method for cracking hydrocarbons using this catalyst increases the yield of FCC liquefied petroleum gas (LPG) and the octane number of FCC gasoline, as well as it increases the concentration of propylene in LPG dramatically.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 9, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Wenbin Jiang, Mingde Xu, Huiping Tian, Yibin Luo, Xingtian Shu, Jishun Zhang, Beiyan Chen, Haitao Song
  • Publication number: 20100288675
    Abstract: The present invention relates to a catalyst for converting inferior acid-containing crude oil. Based on the total amount of the catalyst, said catalyst comprises from 1 to 50 wt % of a mesopore material, from 1 to 60 wt % of molecular sieves and from 5 to 98 wt % of thermotolerant inorganic oxides and from 0 to 70 wt % of clays. Said mesopore material is an amorphous material containing alkaline earth oxide, silica and alumina, and has an anhydrous chemical formula of (0-0.3)Na2O.(1-50)MO.(6-58)Al2O3.(40-92)SiO2, based on the weight percent of the oxides, wherein M is one or more selected from Mg, Ca and Ba. Said mesopore material has a specific surface area of 200-400 m2/g, a pore volume of 0.5-2.0 ml/g, an average pore diameter of 8-20 nm, and a most probable pore size of 5-15 nm. The catalyst provided in the present invention is suitable for the catalytic conversion of crude oil having a total acid number of greater than 0.
    Type: Application
    Filed: January 9, 2009
    Publication date: November 18, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Jiushun Zhang, Huiping Tian, Yuxia Zhu
  • Publication number: 20100282645
    Abstract: The present invention relates to a pre-passivation process for a continuous reforming apparatus prior to the reaction, or a passivation process for a continuous reforming apparatus during the initial reaction, comprising loading a reforming catalyst into the continuous reforming apparatus, starting the gas circulation and raising the temperature of a reactor, injecting sulfide into the gas at a reactor temperature ranging from 100-650° C., controlling the sulfur amount in the recycle gas within a range of 0.5-100×10?6 L/L so as to passivate the apparatus. The process of the present invention may also comprise the following steps: (1) loading a reforming catalyst into the continuous reforming apparatus, starting the gas circulation and raising the temperature of a reactor, feeding the reforming feedstock into the reaction system when the temperature of the reactor is increased to 300-460° C.
    Type: Application
    Filed: October 30, 2008
    Publication date: November 11, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jieguang Wang, Aizeng Ma, Jianqiang Ren, Changqing Ji, Xinkuan Zhang, Hengfang Chen, Yajun Zhao
  • Publication number: 20100248942
    Abstract: The object of the present invention is to provide a catalyst regeneration process which can improve catalyst selectivity. A first aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a first fluidized bed regenerator and contacted with an oxygen-containing gas stream and optional steam to carry out a coke combustion reaction, wherein the resultant mixture of the partially regenerated catalyst and flue gas is introduced into a second fluidized bed regenerator and contacted with steam and an optional oxygen-containing gas stream to carry out a further regeneration reaction, and then the regenerated catalyst is introduced into the reactor. A second aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a fluidized dense bed regenerator and contacted with an oxygen-containing gas stream and steam to carry out a coke combustion reaction, and then the regenerated catalyst is introduced into the reactor.
    Type: Application
    Filed: March 30, 2010
    Publication date: September 30, 2010
    Applicants: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Shouye Cui, Zhigang Zhang, Weimin Lu
  • Patent number: 7776775
    Abstract: The present invention provides a cracking catalyst, containing a rare-earth Y-zeolite and a support, which is characterized in that the rare-earth content in crystal lattice of the rare-earth Y-zeolite is 4-15 wt % of RE2O3; the original unit cell size is 2.440-2.465 nm; the equilibrium unit cell size of the catalyst after 100% steam-aging treatment at 800° C. for 17 hours is larger than 2.435 nm; the rare-earth atom content in the support is 1.0-8.0 wt % of the support. The present invention also relates to a preparation process for the same catalyst.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 17, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Du, Zheng Li, Jun Long, Mingde Xu, Zhijian Da, Huiping Tian, Mingyuan He
  • Patent number: 7767611
    Abstract: A modified zeolite beta having an anhydrous chemical formula, by weight % of the oxides, of (0-0.3)Na2O.(0.5-10)Al2O3.(1.3-10)P2O5.(0.7-15)MxOy.(70-97)SiO2, wherein M is one or more transition metal(s) selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn, x is the number of the atoms of said transition metal M, and y is a number that meets with the requirement of the oxidation state of said transition metal M, is disclosed. The modified zeolite beta can be used as an active component of a cracking catalyst or additive for catalytic cracking of petroleum hydrocarbons.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 3, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Yibin Luo, Zhijian Da, Ying Ouyang, Li Zhuang, Jun Long, Xingtian Shu, Baoning Zong
  • Patent number: 7758847
    Abstract: A MFI-structured molecular sieve containing phosphorus and metal components has a formula expressed in anhydrous form and on the basis of oxide weight, as follows: (0˜0.3) Na2O (0.5˜5.5) Al2O3 (1.3˜10) P2O5 (0.7˜15) M1xOy (0.01˜5) M2mOn (70˜97) SiO2, wherein M1 is one of transition metals selected from the group consisting of Fe, Co and Ni, and M2 is any one of metals selected from the group consisting of Zn, Mn, Ga and Sn. Preparation processes and uses of the instant molecular sieve are also provided. The molecular sieve has an excellent performance for increasing the yield of lower olefins and increasing the aromatics content in gasoline, and can be used as a shape-selective active component for the catalytic cracking catalyst of petroleum hydrocarbons or its additives.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: July 20, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Yibin Luo, Ying Ouyang, Xingtian Shu, Mingyuan He, Dianzhong Wang, Baoning Zong, Minggang Li
  • Patent number: 7745372
    Abstract: A catalyst for the selective hydrogenation of olefins especially dienes, its preparation and use, said catalyst comprising an alumina support and cobalt and/or nickel selected from Group VIII, molybdenum and/or tungsten from Group VIB and alkali metal components supported on said support, characterized in that the catalyst contains 0.5-8% by weight of cobalt and/or nickel selected from Group VIII, 2-15% by weight of molybdenum and/or tungsten from Group VIB, over 2-8% by weight of alkali metals, and a balanced amount of alumina support calculated for oxides and based on the catalyst. Compared to the prior catalysts, the activity and selectivity for olefins especially dienes of the catalyst are higher when used in the hydrogenation of a gasoline distillate.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: June 29, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Mingfeng Li, Yang Chu, Yunjian Hu, Guofu Xia, Hong Nie, Yahua Shi, Dadong Li
  • Patent number: 7713904
    Abstract: This invention relates to a composition with desulfurization property, in which the desulfurization component is a kind of molecular sieves with incorporation of vanadium into the skeleton. The composition has high hydrothermal stability and the vanadium is hard to lose.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: May 11, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Baoning Zong, Jinyu Zheng, Wenhua Xie, Yong Xu, Xuhong Mu, Yibin Luo, Minggang Li, Xingtian Shu
  • Publication number: 20100087670
    Abstract: The present invention provides a process for preparing a bio-diesel, comprising, in the presence of an alkaline metal compound, reacting an oil-fat with C1-C6 monohydric alcohol in a reactor at a reaction temperature of from 130 to 280° C. and a reaction pressure of from 1 to 12 MPa, separating fatty acid esters from the reacted materials, so as to produce the bio-diesel, wherein said alkaline metal compound is present in an amount of 0.001-0.07 wt %, in terms of the metal thereof, relative to the weight of the oil-fat. The process provided in the present invention has the advantages of great throughput and high yield of the bio-diesel.
    Type: Application
    Filed: December 15, 2006
    Publication date: April 8, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Haijing Wang, Zexue Du, Enze Min, Guoqiang Gao
  • Patent number: 7678342
    Abstract: A riser reactor for fluidized catalytic conversion process consists of a prelift zone, a first reaction zone, a second reaction zone with enlarged diameter, an outlet zone with reduced diameter along coaxial direction form bottom to top, and the end of the outlet zone connects to a horizontal tube. The reactor is used for adjusting different operating conditions to process single or plural feedstock in each different reaction zone for producing the desired product.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: March 16, 2010
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Youhao Xu, Bende Yu, Zhigang Zhang, Jun Long, Fukang Jlang
  • Publication number: 20090321321
    Abstract: The invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel, which adsorbent comprises: (1) a carrier consisting of a source of silica, an inorganic oxide binder, and at least one oxide of metal selected from Groups IIB, VB and VIB; (2) at least one accelerant metal which is capable of reducing the sulfur in oxidized state to hydrogen sulfide and has a ?<0.5, wherein ?=(the amount in percentage of accelerant metal in crystal phase)/(the amount in percentage of accelerant metal in the adsorbent). The active components in the adsorbent can be evenly dispersed on the carrier in a matter close to monolayer dispersion, and which greatly improves the activity of the adsorbent. The preparation method and the use of the above adsorbent are provided.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 31, 2009
    Applicants: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin