Patents Assigned to Research Institute of Petroleum Processing, Sinopec
  • Patent number: 9486795
    Abstract: A catalyst for catalytically cracking hydrocarbon oils contains a substrate comprising alumina and a molecular sieve, characterized in that the pore distribution of said catalyst is 5-70% of the <2 nm pores, 5-70% of the 2-4 nm pores, 0-10% of the 4-6 nm pores, 20-80% of the 6-20 nm pores, and 0-40% of the 20-100 nm pores, based on the pore volume of pores having a size of no more than 100 nm. The catalyst of this invention has a large BET pore volume, a high capacity for cracking heavy oils, and a high capacity for resisting coking.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: November 8, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Yujian Liu, Huiping Tian, Liuzhou Zhao, Yuxia Zhu, Zhenyu Chen, Yun Xu, Jing Fan
  • Patent number: 9469817
    Abstract: A hydrocracking catalyst comprises a support, at least one of VIII Group metal components, and at least one of VIB Group metal components. The support comprises an acidic silica-alumina component and alumina derived from a pseudo-boehmite component, wherein the content of the acidic silica-alumina component is 3-80 wt %, the content of alumina derived from the pseudo-boehmite component is 20-95 wt %, based on the support. The support is obtained by mixing, molding, drying and calcining the acidic silica-alumina component with the pseudo-boehmite component, wherein said pseudo-boehmite component comprises pseudo-boehmite PB1 and pseudo-boehmite PB2, wherein the content of PB1 is 10-90 wt % and the content of PB2 is 0-60 wt % on a dry basis and based on the support.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 18, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yichao Mao, Hong Nie, Mingfeng Li, Qinghe Yang, Zhihai Hu, Runqiang Zhang, Guangle Zhao
  • Patent number: 9446381
    Abstract: This disclosures provides an adsorbent which, on the basis of the total weight of the adsorbent, comprises: 1) a Si—Al molecular sieve having an A-FAU structure, wherein A represents a monovalent cation, in an amount of 1-20 wt %, 2) at least one binder selected from the group consisting of titanium dioxide, stannic oxide, zirconium oxide and alumina, in an amount of 3-35 wt %, 3) a silica source, in an amount of 5-40 wt %, 4) zinc oxide, in an amount of 10-80 wt %, and 5) at least one promoter metal selected from the group consisting of cobalt, nickel, iron and manganese, based on the metal, in an amount of 5-30 wt %, wherein at least 10 wt % of the promoter metal is present in a reduced valence state. This adsorbent exhibits improved activity and stability, and at the same time, is capable of significantly improving the octane number of the product gasoline.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 20, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Wei Lin, Huiping Tian, Zhenbo Wang
  • Patent number: 9309467
    Abstract: Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain gas, hydrogenated naphtha, hydrogenated diesel oil, and hydrogenated tail oil; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products to obtain dry gas, hydrogenated naphtha, liquefied petroleum gas, catalytic cracked gasoline, catalytic cracked diesel oil, and catalytic cracking cycle oil; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions, the light and the heavy fractions or normal catalytic cracking heavy feedstock oil and normal catalytic cracking ligh
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 12, 2016
    Assignees: China Petroleum and Chemical Corp., Research Institute of Petroleum Processing, Sinopec
    Inventors: Yongcan Gao, Chaogang Xie, Chuanfeng Niu, Jiushun Zhang, Lishun Dai, Hong Nie, Dadong Li, Jun Long, Jianguo Ma, Yan Cui
  • Patent number: 9303217
    Abstract: Disclosed herein is a process for catalytically reforming naphtha, comprising, in the presence of hydrogen gas, contacting naphtha with at least one reforming catalyst under the conditions of a pressure ranging from 0.15 to 3.0 MPa, a temperature ranging from 300 to 540° C., a volume space velocity ranging from 2.1 to 50 h?1, to carry out a shallow catalytic reforming reaction so as to achieve a naphthene conversion ratio of greater than 85 mass %, and a conversion ratio of paraffins to arenes and C4? hydrocarbons of less than 30 mass %.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 5, 2016
    Assignees: China Petroleum & Chemical Corporation, China Research Institute of Petroleum Processing, Sinopec
    Inventors: Aizeng Ma, Jieguang Wang, Jincheng Pan
  • Patent number: 9259711
    Abstract: The present invention relates to a mesopore material of a catalyst for upgrading acid-containing crude oil. Said mesopore material is an amorphous material containing alkaline earth oxide, silica and alumina, and has an anhydrous chemical formula of (0-0.3)Na2O.(1-50)MO.(6-58)Al2O3.(40-92)SiO2, based on the weight percent of the oxides, wherein M is one or more selected from Mg, Ca and Ba. Said mesopore material has a specific surface area of 200-400 m2/g, a pore volume of 0.5-2.0 ml/g, an average pore diameter of 8-20 nm, and a most probable pore size of 5-15 nm. The present invention further relates to a process for manufacturing said mesopore material and the use thereof. The catalyst prepared from the mesopore material provided in the present invention is suitable for the catalytic upgrading of inferior acid-containing crude oil and for the removal of organic acids, carbon residues and metals in the crude oil, and thus has very good economic benefits.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: February 16, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING SINOPEC
    Inventors: Jun Long, Jiushun Zhang, Huiping Tian, Yuxia Zhu
  • Patent number: 9260667
    Abstract: Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain hydrogenated tail oil and other products; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 16, 2016
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Yongcan Gao, Chaogang Xie, Chuanfeng Niu, Jiushun Zhang, Lishun Dai, Hong Nie, Dadong Li, Jun Long, Jianguo Ma, Yan Cui
  • Patent number: 9221039
    Abstract: Disclosed herein are a catalyst, a preparation process thereof, and a process of epoxidizing olefin using the catalyst. The catalyst contains a binder and a titanium silicate as specified. The catalyst disclosed herein has high strength, and shows high catalytic activity in the epoxidation of olefins.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: December 29, 2015
    Assignees: China Petroleum & Chemical Corporation, Hunan Changling Petrochemical Science and Technology Development Co., Ltd., Research Institute of Petroleum Processing, Sinopec
    Inventors: Min Lin, Hua Li, Wei Wang, Chijian He, Xiaoju Wu, Jizao Gao, Xichun She, Jun Long, Qingling Chen
  • Patent number: 9175230
    Abstract: A cracking catalyst, which contains alumina, phosphorus and molecular sieve, with or without clay, wherein said alumina is ?-alumina or a mixture of ?-alumina and ?-alumina and/or ?-alumina, and wherein the catalyst contains, on the basis of the total amount of the catalyst, 0.5-50 wt % of ?-alumina, 0-50 wt % of ?-alumina and/or ?-alumina, 10-70 wt % of molecular sieve, 0-75 wt % of clay, and 0.1-8 wt % of phosphorus, measured as P2O5. The catalyst not only has higher cracking activity and higher cracking ability for cracking heavy oil, but also improves significantly quality and yield of gasoline, LCO and LPG in cracking products.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: November 3, 2015
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Zhonghong Qiu, Youbao Lu, Jiushun Zhang, Zhijian Da, Huiping Tian, Yuxia Zhu, Wanhong Zhang, Zhenbo Wang
  • Patent number: 9163182
    Abstract: A novel process for cracking olefins including contacting a hydrocarbon oil with a catalyst in a riser reactor having multiple reaction zones under cracking reaction conditions; separating reaction products and the catalyst; regenerating at least a part of spent catalyst obtained, contacting a part of the regenerated catalyst with the hydrocarbon in the first reaction zone; contacting the other part of the spent catalyst and/or regenerated catalyst in at least one reaction zone after the first reaction zone with the products obtained in previous reaction zones.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: October 20, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Yuxia Zhu, Huiping Tian, Yujian Liu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
  • Publication number: 20150126420
    Abstract: This invention relates to a lubricating oil composition and production thereof. The lubricating oil composition comprises a Mannich base represented by the following formula (III) (wherein A and R2 are as defined in the specification) and a lubricant base oil. The lubricating oil composition according to this invention exhibits excellent cleansing and dispersing performance and excellent anticorrosion performance.
    Type: Application
    Filed: April 25, 2013
    Publication date: May 7, 2015
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING SINOPEC
    Inventors: Shihao Xin, Xin Xie, Zuoxin Huang, Qinghua Duan, Zhiqiang Wu, Lihua Wang
  • Patent number: 8975208
    Abstract: The present invention provides an adsorbent for removing sulfur from cracking gasoline or diesel fuel. The adsorbent has excellent abrasion-resistance and desulfurization activity. The adsorbent comprises from about 5 to about 35 wt % of alumina, from about 3 to about 30 wt % of silica, from about 10 to about 80 wt % of at least one oxide of metal selected from Groups IIB and VB, from about 3 to about 30 wt % of at least one metal accelerant selected from Groups VIIB and VIII, and from about 0.5 to about 10 wt % of at least one oxide of metal selected from Groups IA and IIA, based on the total weight of the adsorbent.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 10, 2015
    Assignees: China Petroleum Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Huiping Tian, Wei Lin
  • Publication number: 20150041366
    Abstract: This disclosures provides an adsorbent which, on the basis of the total weight of the adsorbent, comprises: 1) a Si—Al molecular sieve having an A-FAU structure, wherein A represents a monovalent cation, in an amount of 1-20 wt %, 2) at least one binder selected from the group consisting of titanium dioxide, stannic oxide, zirconium oxide and alumina, in an amount of 3-35 wt %, 3) a silica source, in an amount of 5-40 wt %, 4) zinc oxide, in an amount of 10-80 wt %, and 5) at least one promoter metal selected from the group consisting of cobalt, nickel, iron and manganese, based on the metal, in an amount of 5-30 wt %, wherein at least 10 wt % of the promoter metal is present in a reduced valence state. This adsorbent exhibits improved activity and stability, and at the same time, is capable of significantly improving the octane number of the product gasoline.
    Type: Application
    Filed: July 27, 2012
    Publication date: February 12, 2015
    Applicants: RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Wei Lin, Huiping Tian, Zhenbo Wang
  • Patent number: 8940939
    Abstract: A process of oxidizing cyclohexane, comprising feeding cyclohexane, an aqueous hydrogen peroxide solution and optionally an organic solvent into a reaction zone through a feed inlet thereof under the oxidation reaction conditions for contact, and providing all or most of the oxidation product at the reaction zone bottom, wherein a part or all of the packing in the reaction zone is a titanium silicate molecular sieve-containing catalyst. The process of oxidizing cyclohexane according to the present invention carries out the oxidation in the reaction zone, which, firstly, utilizes the latent heat from reaction sufficiently so as to achieve energy-saving; secondly, increases the yield of target product and the availability of oxidizer; and thirdly, allows the separation of the oxidation product from the raw material cyclohexane as the reaction proceeds, such that the cost for subsequent separations can be saved.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: January 27, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Min Lin, Chunfeng Shi, Bin Zhu, Yingchun Ru
  • Patent number: 8932457
    Abstract: A catalytic conversion process uses a catalytic cracking catalyst having a relatively homogeneous activity containing mainly large pore zeolites in a catalytic conversion reactor. The reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feed stock oil and containing a diesel. The reaction temperature ranges from about 420° C. to about 550° C. The residence time of oil vapors ranges from about 0.1 to about 5 seconds. The weight ratio of the catalytic cracking catalyst/feedstock is about 1-about 10.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 13, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Patent number: 8900445
    Abstract: A process for the catalytic conversion of hydrocarbons to convert petroleum hydrocarbons in a higher yield for light olefins, particularly propylene is disclosed, the process involving a hydrocarbon-converting catalyst comprising zeolite, phosphorous and a transition metal, as defined herein.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 2, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Chaogang Xie, Genquan Zhu, Yihua Yang, Yibin Luo, Jun Long, Xingtian Shu, Jiushun Zhang
  • Patent number: 8883669
    Abstract: The present invention relates to a hydrocracking catalyst comprising an acidic silica-alumina, an optional alumina, an effective quantity of at least one VIII Group metal component(s), an effective quantity of at least one VIB Group metal component(s) and an organic additive, wherein the organic additive is one or more selected from the group consisting of an oxygen-containing or nitrogen-containing organic compound, and the molar ratio of the organic additive to the VIII Group metal component(s) is 0.01-10. The present invention relates further to a process for producing the hydrocracking catalyst and use of the catalyst in a process for hydrocracking hydrocarbon oils. The hydrocracking catalyst provided according to the present invention shows a higher activity for aromatic hydrosaturating and ring-opening reaction, as compared with the prior art hydrocracking catalyst.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: November 11, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Yichao Mao, Hong Nie, Jianwei Dong, Zhenlin Xiong, Zhihai Hu, Yahua Shi, Dadong Li
  • Patent number: 8859791
    Abstract: A process for producing an alkylene oxide by olefin epoxidation, wherein said process comprises the steps of: (1) in a first olefin epoxidation condition, in the presence of a first solid catalyst, a first mixed stream containing a solvent, an olefin and H2O2 is subjected to an epoxidation in one or more fixed bed reactors and/or one or more moving bed reactors until the conversion of H2O2 reaches 50%-95%, then, optionally, the resulting reaction mixture obtained in the step (1) is subjected to a separation to obtain a first stream free of H2O2 and a second stream containing the unreacted H2O2, and the olefin is introduced to the second stream to produce a second mixed stream, or optionally, the olefin is introduced to the reaction mixture obtained in the step (1) to produce a second mixed stream; (2) in a second olefin epoxidation condition, the reaction mixture obtained in the step (1) or the second mixed stream obtained in the step (1) and a second solid catalyst are introduced to one or more slurry bed re
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: October 14, 2014
    Assignees: China Petroleum & Chemical Corporation, Hunan Changling Petrochemical Science and Technology Development Co. Ltd., Research Institute of Petroleum Processing, Sinopec
    Inventors: Hua Li, Min Lin, Xiaoju Wu, Wei Wang, Chijian He, Jizao Gao, Xingtian Shu, Shuanghua Wan, Bin Zhu
  • Publication number: 20140275673
    Abstract: A process for producing light olefins and aromatics, which comprises reacting a feedstock by contacting with a catalytic cracking catalyst in at least two reaction zones, wherein the reaction temperature of at least one reaction zone among the reaction zones downstream of the first reaction zone is higher than that of the first reaction zone and its weight hourly space velocity is lower than that of the first reaction zone, separating the spent catalyst from the reaction product vapor, regenerating the separated spent catalyst and returning the regenerated catalyst to the reactor, and separating the reaction product vapor to obtain the desired products, light olefins and aromatics. This process produces maximum light olefins such as propylene, ethylene, etc from heavy feedstocks, wherein the yield of propylene exceeds 20% by weight, and produces aromatics such as toluene, xylene, etc at the same time.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicants: CHINA PETROLEUM CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun LONG, Zhijian DA, Dadong LI, Xieqing WANG, Xingtian SHU, Jiushun ZHANG, Hong NIE, Chaogang XIE, Zhigang ZHANG, Wei WANG
  • Patent number: 8809216
    Abstract: The present invention relates to a catalyst for converting inferior acid-containing crude oil. Based on the total amount of the catalyst, said catalyst comprises from 1 to 50 wt % of a mesopore material, from 1 to 60 wt % of molecular sieves and from 5 to 98 wt % of thermotolerant inorganic oxides and from 0 to 70 wt % of clays. Said mesopore material is an amorphous material containing alkaline earth oxide, silica and alumina, and has an anhydrous chemical formula of (0-0.3)Na2O.(1-50)MO.(6-58)Al2O3.(40-92)SiO2, based on the weight percent of the oxides, wherein M is one or more selected from Mg, Ca and Ba. Said mesopore material has a specific surface area of 200-400 m2/g, a pore volume of 0.5-2.0 ml/g, an average pore diameter of 8-20 nm, and a most probable pore size of 5-15 nm. The catalyst provided in the present invention is suitable for the catalytic conversion of crude oil having a total acid number of greater than 0.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: August 19, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Jiushun Zhang, Huiping Tian, Yuxia Zhu