Patents Assigned to Rice University
  • Patent number: 9452239
    Abstract: Methods of fabricating a substantially interconnected model vasculature, as well as compositions formed from such methods are provided. In some embodiments, the methods may comprise forming a non-woven fiber network comprising a plurality of fibers and a void space; backfilling the void space of the fiber network; and removing the fibers to form a substantially interconnected vascular network.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: September 27, 2016
    Assignees: William Marsh Rice University, University of Pennsylvania
    Inventors: Jennifer L. West, Christopher S. Chen, Jordan S. Miller, Michael T. Yang
  • Patent number: 9453763
    Abstract: A method of adjusting a resolution of a multidimensional imaging system includes taking a first hyperspectral snapshot by the multidimensional imaging system comprising a light processor comprising a plurality of optical fibers having a first end with an input spacing and a second end with an adjustable output spacing; adjusting the adjustable output spacing of the light processor to a new output spacing; and taking a second hyperspectral snapshot after adjusting the adjustable spacing of the multidimensional imagining system.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: September 27, 2016
    Assignee: William Marsh Rice University
    Inventor: Tomasz S. Tkaczyk
  • Publication number: 20160276588
    Abstract: A porous memory device, such as a memory or a switch, may provide a top and bottom electrodes with a memory material layer (e.g. SiOx) positioned between the electrodes. The memory material layer may provide a nanoporous structure. In some embodiments, the nanoporous structure may be formed electrochemically, such as from anodic etching. Electroformation of a filament through the memory material layer may occur internally through the layer rather than at an edge at extremely low electro-forming voltages. The porous memory device may also provide multi-bit storage, high on-off ratios, long high-temperature lifetime, excellent cycling endurance, fast switching, and lower power consumption.
    Type: Application
    Filed: November 19, 2014
    Publication date: September 22, 2016
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Gunuk Wang, Yang Yang, Yongsung Ji
  • Publication number: 20160276411
    Abstract: Various embodiments of the resistive memory cells and arrays discussed herein comprise: (1) a first electrode; (2) a second electrode; (3) resistive memory material; and (4) a diode. The resistive memory material is selected from the group consisting of SiOx, SiOxNy, SiOxNyH, SiOxCz, SiOxCzH, and combinations thereof, wherein each of x, y and z are equal or greater than 1 or equal or less than 2. The diode may be any suitable diode, such as n-p diodes, p-n diodes, and Schottky diodes.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Applicants: William Marsh Rice University
    Inventors: James M. Tour, Jun Yao, Jian Lin, Gunuk Wang, Krishna Palem
  • Publication number: 20160263150
    Abstract: Various embodiments of the present disclosure pertain to methods of optimizing a treatment efficacy of a biological system by tuning a property of the biological system through the addition of an optimizing agent to the biological system. The tuning can include: (a) determining a property parameter of the biological system; (b) selecting an optimizing agent to be added to the biological system based on the determined property parameter; and (c) adding the optimizing agent to the biological system. The optimizing agent can include a kosmotropic material. The biological system can include a tissue, such as a tumor. The methods of the present disclosure can be utilized to enhance the efficacy of various treatments, such as the heat treatment of a biological system exposed to a radiofrequency field. The methods of the present disclosure can also include a step of treating the biological system.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 15, 2016
    Applicants: Baylor College of Medicine, William Marsh Rice University
    Inventors: Nadia C. Lara, Andrew R. Barron, Stuart Corr, Steven Curley
  • Patent number: 9441253
    Abstract: The disclosure relates to a metabolic transistor in bacteria where a competitive pathway is introduced to compete with a product pathway for available carbon so as to control the carbon flux in the bacteria.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: September 13, 2016
    Assignee: William Marsh Rice University
    Inventors: Ka-Yiu San, George N. Bennett, Hui Wu
  • Patent number: 9416364
    Abstract: The invention relates to recombinant microorganisms that have been engineered to produce various chemicals using genes that have been repurposed to create a reverse beta oxidation pathway. Generally speaking, the beta oxidation cycle is expressed and driven in reverse by modifying various regulation points for as many cycles as needed, and then the CoA thioester intermediates are converted to useful products by the action of termination enzymes.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: August 16, 2016
    Assignee: William Marsh Rice University
    Inventors: Ramon Gonzalez, James Clomburg, Clementina Dellomonaco, Elliot N. Miller
  • Publication number: 20160223478
    Abstract: An Electron Paramagnetic resonance (EPR) system and method allows the measurement paramagnetic characteristics of materials in real-time, such as heavy oil, hydrocarbons, asphaltenes, heptane, vanadium, resins, drilling fluid, mud, wax deposits or the like. The EPR systems and methods discussed herein are low cost, small and light weight, making them usable in flow-assurance or logging applications. The EPR sensor is capable of measuring paramagnetic properties of materials from a distance of several inches. In some embodiments, a window will be used to separate the EPR sensor from the materials in a pipeline or wellbore. Since the sensor does need to be in direct contact with the materials, it can operate at a lower temperature or pressure. In other embodiments, the EPR sensor may be placed in the materials.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 4, 2016
    Applicant: William Marsh Rice University
    Inventors: Aydin Babakhani, Xuebei Yang
  • Publication number: 20160223669
    Abstract: A radar system may comprise a trigger, driver, switching circuit, and antenna for generating an ultra-short impulse without utilizing an oscillator. A radar imaging system for imaging a formation or a cross section of a pipeline may include at least one radar sensor. The system may transmit a high-frequency, short impulse signal to a formation or pipeline and measure a reflected signal. A high speed impulse generator may allow the short impulse signals to be generated. This impulse generator may utilize a switching circuit and digital driver to provide the short impulse signals. The images provide useful information about complex permittivity of the formation, the geometry of the pipeline, deposition thickness of asphaltenes and wax, velocity of the fluid, as well as size, type, concentration of gas bubbles, water, or solid particles in the flow, or combinations thereof.
    Type: Application
    Filed: September 29, 2014
    Publication date: August 4, 2016
    Applicant: William Marsh Rice University
    Inventors: M. Mahdi Assefzadeh, Aydin Babakhani
  • Patent number: 9388434
    Abstract: The present invention relates to an engineered bacteria for producing short chain fatty acid with the overexpression of a long chain (>C12) acyl-ACP thioesterases (long-TE) and a short chain (?C12) acyl-ACP thioesterases (short-TE).
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: July 12, 2016
    Assignee: William Marsh Rice University
    Inventors: Ka-Yiu San, Songi Han
  • Patent number: 9372151
    Abstract: A device for Surface Enhanced Infrared Absorption (SEIRA) that includes at least one pair of metallic antennas deposited on a substrate, wherein the pair of metallic antennas are collinear. The length, width, and height of the metallic antenna determines an infrared absorption of the pair of metallic antennas. The device also includes a gap located between the pair of metallic antennas. A chemical moiety is disposed on at least a portion of the metallic antennas such that the infrared absorption of the chemical moiety is enhanced by the at least one pair of metallic antennas.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 21, 2016
    Assignee: William Marsh Rice University
    Inventors: Lisa V. Brown, Ke Zhao, Nancy J. Halas, Peter J. Nordlander
  • Publication number: 20160163652
    Abstract: The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics, and/or inorganic oxides. A coated fullerene interconnect device where at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Applicants: William Marsh Rice University, Natcore Technology, Inc.
    Inventors: Andrew R. Barron, Dennis J. Flood, Elizabeth Whitsitt
  • Publication number: 20160153098
    Abstract: In some embodiments, the present disclosure pertains to methods of mediating a gas evolution reaction by exposing a gas precursor to an electrocatalyst that comprises a plurality of layers with catalytic sites. The exposing results in electrocatalytic conversion of the gas precursor to a gas. Thereafter, the generated gas enhances the electrocatalytic activity of the electrocatalyst by enhancing the accessibility of the catalytic sites to the gas precursor. In some embodiments, the electrocatalyst is associated with an electrically conductive surface (e.g., an electrode) that provides electrical current. In some embodiments, the electrocatalyst is a hydrogen production electrocatalyst that converts H+ to H2. In some embodiments, the electrocatalyst includes a transition metal dichalcogenide. Further embodiments of the present disclosure pertain to the aforementioned electrocatalysts for mediating gas evolution reactions.
    Type: Application
    Filed: November 25, 2015
    Publication date: June 2, 2016
    Applicants: William Marsh Rice University, Lawrence Livermore National Laboratory
    Inventors: Ken Hackenberg, Kunttal Keyshar, Jingjie Wu, Yuanyue Liu, Pulickel Ajayan, Brandon Wood, Boris Yakobson
  • Publication number: 20160143538
    Abstract: A system for estimating a photoplethysmogram waveform of a target includes an image processor configured to obtain images of the target and a waveform analyzer. The waveform analyzer is configured to determine a weight of a portion of the target. The weight is based on a time variation of a light reflectivity of the portion of the target. The time variation of the light reflectivity of the target is based on the images. The waveform analyzer is further configured to estimate a PPG waveform of the target based on the weight of the portion and the time variation of the light reflectivity of the portion.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 26, 2016
    Applicant: William Marsh Rice University
    Inventors: Mayank Kumar, Ashok Veeraraghavan, Ashutosh Sabharwal
  • Patent number: 9340894
    Abstract: In some embodiments, the present invention provides novel methods of preparing porous silicon films and particles for lithium ion batteries. In some embodiments, such methods generally include: (1) etching a silicon material by exposure of the silicon material to a constant current density in a solution to produce a porous silicon film over a substrate; and (2) separating the porous silicon film from the substrate by gradually increasing the electric current density in sequential increments. In some embodiments, the methods of the present invention may also include a step of associating the porous silicon film with a binding material. In some embodiments, the methods of the present invention may also include a step of splitting the porous silicon film to form porous silicon particles. Additional embodiments of the present invention pertain to anode materials derived from the porous silicon films and porous silicon particles.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: May 17, 2016
    Assignees: William Marsh Rice University, Lockheed Martin Corporation
    Inventors: Sibani Lisa Biswal, Madhuri Thakur, Michael S. Wong, Steven L. Sinsabaugh, Mark Isaacson
  • Publication number: 20160118527
    Abstract: An opto-electronic sensor may provide one or more layers of atomically layered photo-sensitive materials. The sensor may include a gate electrode layer, a dielectric layer in contact with the gate electrode layer, and a working media layer that is photo-sensitive deposited on the dielectric layer. The working media layer may provide one or more layers of one or more materials where each of the one or more layers is an atomic layer. The sensor may also include side electrodes in contact with the working media layer.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 28, 2016
    Applicant: William Marsh Rice University
    Inventors: Sidong Lei, Liehui Ge, Antony George, Bo Li, Robert Vajtai, Pulickel M. Ajayan
  • Patent number: 9321021
    Abstract: An improved process for converting an oil suspension of nanoparticles (NPs) into a water suspension of NPs, wherein water and surfactant and a non-surfactant salt is used instead of merely water and surfactant, leading to greatly improved NP aqueous suspensions.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: April 26, 2016
    Assignee: William Marsh Rice University
    Inventors: Michael S. Wong, Hitesh Ghanshyam Bagaria, Gautam Chandrakanth Kini, Wen Yin Lynn Ko
  • Patent number: 9309543
    Abstract: There is provided a recombinant bacterium comprising at least one overexpressed acyl-ACP thioesterase gene, and wherein at least one gene from the tricarboxylic acid cycle or glycolysis or both is inactivated. There is also provided a method for producing fatty acids, said method comprising culturing bacteria comprising at least one overexpressed acyl-ACP thioesterase gene in a growth medium in a container having walls; allowing said bacteria to secrete fatty acids; and collecting said fatty acids. Acid supplementation is also shown to increase productivity.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 12, 2016
    Assignee: William Marsh Rice University
    Inventors: Ka-Yiu San, Mai Li, Xiujun Zhang
  • Publication number: 20160068690
    Abstract: The present invention relates to a composition comprising carbon nanotubes and a surfactant for forming a thin film on a substrate, and a method of manufacturing a thin film on a substrate by using an aqueous dispersion of the composition comprising carbon nanotubes and a surfactant.
    Type: Application
    Filed: September 4, 2015
    Publication date: March 10, 2016
    Applicants: NITTO DENKO CORPORATION, Rice University
    Inventors: Ryuta KIBE, Takayuki YAMAMOTO, Laurent MAILLAUD, Robert James HEADRICK, Francesca MIRRI, Matteo PASQUALI
  • Publication number: 20160031711
    Abstract: In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.
    Type: Application
    Filed: June 30, 2015
    Publication date: February 4, 2016
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Zhengzong Sun, Zheng Yan, Gedeng Ruan, Zhiwei Peng