Patents Assigned to Rice University
  • Publication number: 20200207625
    Abstract: Embodiments of the present disclosure pertain to methods of making a carbon nanotube hybrid material by depositing a catalyst solution onto a carbon-based material, and growing carbon nanotubes on the carbon-based material such that the grown carbon nanotubes become covalently linked to the carbon-based material through carbon-carbon bonds. The catalyst solution includes a metal component (e.g., iron) and a buffer component (e.g., aluminum) that may be in the form of particles. The metal component of the particle may be in the form of a metallic core or metallic oxide core while the buffer component may be on a surface of the metal component in the form of metal or metal oxides. Further embodiments of the present disclosure pertain to the catalytic particles and carbon nanotube hybrid materials. The carbon nanotube hybrid materials of the present disclosure may be incorporated as electrodes (e.g., anodes or cathodes) in energy storage devices.
    Type: Application
    Filed: March 6, 2020
    Publication date: July 2, 2020
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Rodrigo Villegas Salvatierra, Dante Zakhidov, Junwei Sha
  • Publication number: 20200206722
    Abstract: A method of making a multicomponent photocatalyst, includes inducing precipitation from a pre-cursor solution comprising a pre-cursor of a plasmonic material and a pre-cursor of a reactive component to form co-precipitated particles; collecting the co-precipitated particles; and annealing the co-precipitated particles to form the multicomponent photocatalyst comprising a reactive component optically, thermally, or electronically coupled to a plasmonic material.
    Type: Application
    Filed: May 11, 2018
    Publication date: July 2, 2020
    Applicant: William Marsh Rice University
    Inventors: Nancy Jean Halas, Peter Nordlander, Hossein Robatjazi, Dayne Francis Swearer, Chao Zhang, Hangqi Zhao, Linan Zhou
  • Patent number: 10689974
    Abstract: Systems and methods for fracture mapping may utilize frequency changing to aid in providing high-resolution mapping. Integrated chips may be injected into a well and dispersed into a formation. A downhole tool that provides a transmitter and receiver may be positioned in the well. The transmitter may transmit electromagnetic (EM) signals into the formation. The dispersed integrated chips may receive the transmitted EM signal and return a frequency-changed signal to the receiver of the downhole tool. Utilizing the returned frequency changed signal, the system is able to determine the locations of the integrated chips that have been dispersed into the formation and provide fracture mapping. In another variation, the integrated chips may communicate with each other to provide fracture mapping.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: June 23, 2020
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventor: Aydin Babakhani
  • Patent number: 10694123
    Abstract: A method for imaging objects includes illuminating an object with a light source of an imaging device, and receiving an illumination field reflected by the object. An aperture field that intercepts a pupil of the imaging device is an optical propagation of the illumination field at an aperture plane. The method includes receiving a portion of the aperture field onto a camera sensor, and receiving a sensor field of optical intensity. The method also includes iteratively centering the camera focus along the Fourier plane at different locations to produce a series of sensor fields and stitching together the sensor fields in the Fourier domain to generate an image. The method also includes determining a plurality of phase information for each sensor field in the series of sensor fields, applying the plurality of phase information to the image, receiving a plurality of illumination fields reflected by the object, and denoising the intensity of plurality of illumination fields using Fourier ptychography.
    Type: Grant
    Filed: July 14, 2018
    Date of Patent: June 23, 2020
    Assignees: Northwestern University, William Marsh Rice University
    Inventors: Oliver Strider Cossairt, Jason Holloway, Ashok Veeraraghavan, Manoj Kumar Sharma, Yicheng Wu
  • Publication number: 20200164072
    Abstract: A nanosample capable of near-infrared light-triggered release of therapeutic molecules. The nanosample includes a plurality of nanocomplexes. Each of the nanocomplexes includes a nanoshell; a host molecule linked to the nanoshell; and a guest molecule linked to the host molecule. The nanoshell includes a shell. The nanocomplex has a plasmon resonance wavelength. When irradiated with electromagnetic radiation of the plasmon resonance wavelength, plasmon resonance of the nanocomplex releases the guest molecule. The nanoshell may also include a core, where the shell surrounds the core. The nanoshell may be a nanomatryoshka. A link between the nanoshell and the host molecule may be a gold-thiol interaction. The shell may include at least one metal, such as gold or silver. The core may be a liposome and/or silica. The host molecule may be: synthetic polymers, biopolymers, polynucleotides, nucleic acids, polypeptides, polysaccharides, polyterpenes, lipids, aptamers, and/or proteins.
    Type: Application
    Filed: October 7, 2019
    Publication date: May 28, 2020
    Applicant: William Marsh Rice University
    Inventors: Nancy J. Halas, Oara Neumann, Amanda M. Goodman, Sandra W. Bishnoi, Susan E. Clare
  • Patent number: 10663541
    Abstract: An active cancellation system may be utilized to cancel interference, such as from transmitter leakage or self-interference in a transceiver of an electron paramagnetic resonance (EPR) spectrometer. The active cancellation system may be inserted between the transmitter and receiver. The active cancellation system may receive the output of the transmitter, and generate a cancellation signal with the same amplitude, but phase shifted relative to the self-interference signal. The cancellation system may include an attenuator/amplitude tuner, buffer, VQ generator, and phase shifter.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: May 26, 2020
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Aydin Babakhani, Xuebei Yang
  • Publication number: 20200146975
    Abstract: In one aspect, the present disclosure provides for novel compositions of matter comprising multi domain peptide (MDP) hydrogels and cyclic dinucleotides (CDNs). Also disclosed are method of using such compositions in the treatment of cancer, including in particular the treatment of head and neck cancers, such as those resistant to CDN therapy.
    Type: Application
    Filed: June 15, 2018
    Publication date: May 14, 2020
    Applicants: WILLIAM MARSH RICE UNIVERSITY, THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Simon YOUNG, David LEACH, Jeffrey D. HARTGERINK
  • Patent number: 10633676
    Abstract: The invention relates to recombinant microorganisms that have been engineered to produce various chemicals using genes that have been repurposed to create a reverse beta oxidation pathway. Generally speaking, the beta oxidation cycle is expressed and driven in reverse by modifying various regulation points for as many cycles as needed, and then the CoA thioester intermediates are converted to useful products by the action of termination enzymes.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: April 28, 2020
    Assignee: William Marsh Rice University
    Inventors: Ramon Gonzalez, James Clomburg, Clementina Dellomonaco, Elliot N. Miller
  • Publication number: 20200112026
    Abstract: In some embodiments, the present disclosure pertains to methods of producing a graphene material by exposing a polymer to a laser source. In some embodiments, the exposing results in formation of a graphene from the polymer. In some embodiments, the methods of the present disclosure also include a step of separating the formed graphene from the polymer to form an isolated graphene. In some embodiments, the methods of the present disclosure also include a step of incorporating the graphene material or the isolated graphene into an electronic device, such as an energy storage device. In some embodiments, the graphene is utilized as at least one of an electrode, current collector or additive in the electronic device. Additional embodiments of the present disclosure pertain to the graphene materials, isolated graphenes, and electronic devices that are formed by the methods of the present disclosure.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 9, 2020
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Jian Lin, Zhiwei Peng, Carter Kittrell
  • Patent number: 10590760
    Abstract: Methods and systems for conducting downhole operations including collecting downhole dynamic event data using a downhole tool, wherein the downhole dynamic event data is time-domain data, processing the collected downhole dynamic event data using a computing system located downhole to convert the time-domain data into frequency-domain data, and extracting digital filter coefficients from the frequency-domain data.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: March 17, 2020
    Assignees: BAKER HUGHES, A GE COMPANY, LLC, WILLIAM MARSH RICE UNIVERSITY
    Inventors: Timothy Michael Popp, Holger Stibbe, Polichronis-Thomas D. Spanos
  • Patent number: 10590158
    Abstract: In one aspect, the present disclosure provides shishijimicin analogs of the formula: wherein the variables are as defined herein. In another aspect, the present disclosure also provides methods of preparing the compounds disclosed herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of use of the compounds disclosed herein. Additionally, antibody drug conjugates of the compounds are also provided.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 17, 2020
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Kyriacos C. Nicolaou, Ruofan Li, Zhaoyong Lu, Te-ik Sohn, James Woods, Emmanouil N. Pitsinos
  • Publication number: 20200080136
    Abstract: This present disclosure describes hybridization probes modularly constructed from several oligonucleotides with a pattern of designed complementary interactions, allowing the probes to sequence-specifically capture or analyze nucleic acid target sequences that are long and/or complex.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 12, 2020
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: David ZHANG, Juexiao WANG, Yan YAN
  • Publication number: 20200071200
    Abstract: A method of forming an electrode for capacitive deionization includes depositing an slurry onto a substrate, wherein the slurry comprises a porous material, a first crosslinkable hydrophilic polymer, and a crosslinker for the first crosslinkable hydrophilic polymer; annealing the slurry deposited on the substrate to create a crosslinked porous layer on the substrate; depositing an solution comprising an ion-exchange material, a second crosslinkable hydrophilic polymer, and a crosslinker for the second crosslinkable hydrophilic polymer onto the crosslinked porous layer; and optionally annealing and/or drying the solution on the crosslinked porous layer.
    Type: Application
    Filed: August 6, 2019
    Publication date: March 5, 2020
    Applicant: William Marsh Rice University
    Inventors: Rafael Verduzco, Amit Jain, Jun Kim, Qilin Li, Kuichang Zuo
  • Publication number: 20200032147
    Abstract: Asphaltene may be effectively broken into smaller molecules by first elucidating the structure of the asphaltene and then developing a catalyst system based on the elucidated structure. The structure may be determined based on a series of analytical techniques including NMR, FTIR, Raman spectroscopy, XPS, and LDI. The most probable structure is determined using computational methods based on quantum mechanics and classical molecular dynamics and the catalyst system is developed for the most probable structure.
    Type: Application
    Filed: April 1, 2019
    Publication date: January 30, 2020
    Applicants: NEXTSTREAM HEAVY OIL, LLC, William Marsh Rice University
    Inventors: MANJUSHA VERMA, PRADEEP VENKATARAMAN, SIVARAM PRADHAN, HOUMAN MICHAEL SHAMMAI, SCOTT WELLINGTON, WILBUR EDWARD BILLUPS
  • Publication number: 20200024941
    Abstract: Systems and methods for fracture mapping may utilize frequency changing to aid in providing high-resolution mapping. Integrated chips may be injected into a well and dispersed into a formation. A downhole tool that provides a transmitter and receiver may be positioned in the well. The transmitter may transmit electromagnetic (EM) signals into the formation. The dispersed integrated chips may receive the transmitted EM signal and return a frequency-changed signal to the receiver of the downhole tool. Utilizing the returned frequency changed signal, the system is able to determine the locations of the integrated chips that have been dispersed into the formation and provide fracture mapping. In another variation, the integrated chips may communicate with each other to provide fracture mapping.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 23, 2020
    Applicant: William Marsh Rice University
    Inventor: Aydin Babakhani
  • Publication number: 20200024283
    Abstract: In one aspect, the present disclosure provides analogs of thailanstatin of the formula wherein the variables are as defined herein. In another aspect, the present disclosure also provides methods of preparing the compounds disclosed herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of use of the compounds disclosed herein.
    Type: Application
    Filed: June 8, 2017
    Publication date: January 23, 2020
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Kyriacos C. NICOLAOU, Derek RHOADES, Soundarapandian M. KUMAR, Manas R. PATTANAYAK, Manjunath LAMANI
  • Patent number: 10540947
    Abstract: Embodiments of a capo and fretting component are described. In certain embodiments, the fretting component is threaded onto a crossbar configured to overlie the instrument strings when in use and to pivot with respect to the crossbar so as to contact and press the strings against a fret on the instrument neck. The fretting component is offset with respect to the attachment mechanism of the capo, allowing the attachment mechanism to be offset on the neck of the instrument from where it would normally be positioned to achieve a comparable fretting effect.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: January 21, 2020
    Assignee: William Marsh Rice University
    Inventors: Daniel Curtis Blacker, Matthew Carroll, John Vinson Jaggers
  • Patent number: 10526884
    Abstract: A well monitoring system may provide a plurality of integrated chips dispersed in cement surrounding a well casing. Each of the integrated chips may provide energy harvesting circuitry, EM transceiver, modulator, additional sensor(s), processor or microprocessor, memory, power source, or the like. Upon analyzing data gather from the sensor(s), emitted and detected EM waves, the system may provide information about the cement thickness at different parts of the well, cement setting/curing, local electrical permittivity, local magnetic permeability, temperature, pressure, pH, local NMR spectrum, local ESR spectrum, local florescence response, local porosity, local permeability, etc. Further, the integrated chips may be utilized to transmit/receive the abovementioned data, other data (e.g. command data, power signal, etc.), or the like to/from the main transceiver.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: January 7, 2020
    Assignee: William Marsh Rice University
    Inventor: Aydin Babakhani
  • Publication number: 20200000581
    Abstract: One aspect of the invention provides and artificial, flexible valve indlucding: a stent defining a wall and a plurality of leaflets extending from the wall of the stent. The plurality of leaflets form a plurality of coaptation regions between two adjacent leaflets. The coaptation regions include extensions along a z-axis and adapted and are configured to form a releasable, but substantially complete seal when the leaflets are in a closed position. Another aspect of the invention provides an artificial, flexible valve including: a stent defining a wall and a plurality of leaflets extending from the wall of the stent. Each of the plurality of leaflets terminates in a commissure line. The commissure lines devi-ate from a hyperbola formed in the x-y plane by at least one deviation selected from the group consisting of: a deviation in the z-direction and one or more curves relative to the hyperbola.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 2, 2020
    Applicants: Baylor College of Medicine, William Marsh Rice University
    Inventors: Henri JUSTINO, Daniel HARRINGTON, Kwonsoo CHUN
  • Publication number: 20200002174
    Abstract: Laser-induced graphene (LIG) and laser-induced graphene scrolls (LIGS) materials and, more particularly to LIGS, methods of making LIGS (such as from polyimide (PI)), laser-induced removal of LIG and LIGS, and 3D printing of LIG and LIGS using a laminated object manufacturing (LOM) process.
    Type: Application
    Filed: June 21, 2017
    Publication date: January 2, 2020
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Duy X. Luong, Ajay Subramanian