Abstract: A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Type:
Grant
Filed:
December 15, 2011
Date of Patent:
December 29, 2015
Assignee:
William Marsh Rice University
Inventors:
Nancy J. Halas, Peter Nordlander, Oara Neumann
Abstract: Various embodiments of the present disclosure provide methods of making wellbore fluids with enhanced electrical conductivities. In some embodiments, such methods comprise: (1) pre-treating a carbon material with an acid; and (2) adding the carbon material to the wellbore fluid. Further embodiments of the present disclosure pertain to wellbore fluids formed by the methods of the present disclosure. Additional embodiments of the present disclosure pertain to methods for logging a subterranean well by utilizing the aforementioned wellbore fluids.
Type:
Application
Filed:
December 4, 2013
Publication date:
December 24, 2015
Applicants:
William Marsh Rice University, M-I L.L.C.
Inventors:
James M. Tour, Gabriel Ceriotti, Alexander Slesarev, Ruquan Ye, Katherine Price-Hoelscher, Cara Bovet, Jim Friedheim, Steve Young
Abstract: A method and system to induce bone growth by locally delivering bone morphogenetic proteins (BMPs) to the target location for a prolonged period without invasive procedures are disclosed. The new bone growth is induced by delivering cells producing BMPs from transduced viral vectors to the target cite. In various embodiments, the cells are encapsulated in hydrogel microspheres that are non-degradable or degradable by enzymes produced during the bone formation process. Various embodiments may be used to induce spinal fusion or repair critical bone defects.
Type:
Application
Filed:
January 12, 2015
Publication date:
December 17, 2015
Applicants:
WILLIAM MARSH RICE UNIVERSITY, BAYLOR COLLEGE OF MEDICINE
Inventors:
Alan R. Davis, Elizabeth A. Davis, Kevin Moran, Ronke M. Olabisi, Jennifer L. West, Christy Franco
Abstract: In some embodiments, the present disclosure pertains to methods of producing graphene nanoplatelets by exposing graphite to a medium to form a dispersion of graphite in the medium. In some embodiments, the exposing results in formation of graphene nanoplatelets from the graphite. In some embodiments, the medium includes the following components: (a) an acid; (b) a dehydrating agent; and (c) an oxidizing agent. In some embodiments, the methods of the present disclosure result in the formation of graphene nanoplatelets at a yield of more than 90%. In some embodiments, the methods of the present disclosure result in the formation of graphene nanoplatelets in bulk quantities that are more than about 1 kg of graphene nanoplatelets. Additional embodiments of the present disclosure pertains to the formed graphene nanoplatelets. In some embodiments, the graphene nanoplatelets include a plurality of layers, such as from about 1 layer to about 100 layers.
Type:
Application
Filed:
June 15, 2015
Publication date:
December 17, 2015
Applicant:
William Marsh Rice University
Inventors:
James M. Tour, Ayrat Dimiev, Gabriel Ceriotti
Abstract: In general, the invention relates to a unit that includes a semiconductor and a plasmonic material disposed on the semiconductor, where a potential barrier is formed between the plasmonic material and the semiconductor. The unit further includes an insulator disposed on the semiconductor and adjacent to the plasmonic material and a transparent conductor disposed on the plasmonic material, where, upon illumination, the plasmonic material is excited resulting the excitation of an electron with sufficient energy to overcome the potential barrier.
Type:
Grant
Filed:
November 11, 2011
Date of Patent:
December 1, 2015
Assignee:
William Marsh Rice University
Inventors:
Mark William Knight, Heidar Sobhani Khakestar, Peter Nordlander, Nancy J. Halas
Abstract: A system for coupling teraherz (THz) radiation to a coaxial waveguide comprises an antenna that generates THz radiation having a mode that matches the mode of the waveguide. The antenna may comprise a pair of concentric electrodes, at least one of which may be affixed to or formed by one end of the waveguide. The radiation may have wavelengths between approximately 30 ?m and 3 mm. The waveguide may comprise an inner core and an outer wall defining an annular region. A terahertz sensor system may comprise a terahertz antenna comprising first and second concentric electrodes, means for generating a field across the trodes and means for triggering the emission of terahertz radiation, a first waveguide having first and second ends, said first end being coupled to said antenna so as to receive at least a portion of said terahertz radiation, and a sensor for detecting said terahertz radiation.
Abstract: In some embodiments, the present disclosure pertains to methods of producing graphene nanoribbons by exposing carbon nanotubes to a medium to result in formation of the graphene nanoribbons from the carbon nanotubes. In some embodiments, the carbon nanotubes include multi-walled carbon nanotubes. In some embodiments, the medium comprises: (a) an acid, (b) a dehydrating agent, and (c) an oxidizing agent. In some embodiments, the acid comprises sulfuric acid, the dehydrating agent comprises oleum (e.g., with a free sulfur trioxide (SO3) content of about 20% by weight of the oleum), and the oxidizing agent comprises ammonium persulfate. In some embodiments, the exposing opens the carbon nanotubes parallel to their longitudinal axis to form graphene nanoribbons. Additional embodiments of the present disclosure pertain to the graphene nanoribbons that are formed by the methods of the present disclosure.
Abstract: In some embodiments, the present disclosure provides methods for fabricating carbon nanotube films. Such methods generally comprise: (i) suspending carbon nanotubes in a superacid (e.g. chloro sulfonic acid) to form a dispersed carbon nanotube-superacid solution, wherein the carbon nanotubes have substantially exposed sidewalls in the carbon nanotube-superacid solution; (ii) applying the dispersed carbon nanotube-superacid solution onto a surface to form a carbon nanotube film; and (iii) removing the superacid. Desirably, such methods occur without the utilization of carbon nanotube wrapping molecules or sonication. Further embodiments of the present disclosure pertain to carbon nanotube films that are fabricated in accordance with the methods of the present disclosure. Such carbon nanotube films comprise a plurality of carbon nanotubes that are dispersed and individualized.
Type:
Application
Filed:
September 13, 2012
Publication date:
October 22, 2015
Applicant:
William Marsh Rice University
Inventors:
Matteo Pasquali, Wing Kui Anson Ma, Natnael Behabtu, Mainak Majumder, Jaewook Nam, Francesca Mirri, Tien Yi Theresa Hsu Whiting
Abstract: A golf club may include a control unit that detects a swing of the golf club and generates a signal based on at least one goal swing parameter during the swing of the golf club. The golf club may include a stimulation generation module, configured to generate a stimulation in response to the signal.
Type:
Application
Filed:
April 8, 2015
Publication date:
October 8, 2015
Applicant:
William Marsh Rice University
Inventors:
Sid Mullick, Chelsea Rodrigues, Matthew Lopez, Yize Zhao, Roy Wu, Gary Woods, Laurence Ray Simar, JR.
Abstract: In some embodiments, the present disclosure pertains to methods of making three-dimensional graphene compositions. In some embodiments, the methods comprise: (1) associating a graphene oxide with a metal source to form a mixture; and (2) reducing the mixture. In some embodiments, the method results in formation of a three-dimensional graphene composition that includes: (a) a reduced metal derived from the metal source; and (b) a graphene derived from the graphene oxide, where the graphene is associated with the reduced metal. In some embodiments, the metal source is (NH4)2MoS4, and the reduced metal is MoS2. In some embodiments, the metal source is V2O5, and the reduced metal is VO2. Further embodiments of the present disclosure pertain to the formed three-dimensional graphene compositions and their use as electrode materials in energy storage devices.
Type:
Application
Filed:
March 11, 2014
Publication date:
October 1, 2015
Applicant:
William Marsh Rice University
Inventors:
Yongji Gong, Shubin Yang, Pulickel M. Ajayan
Abstract: In some embodiments, the present disclosure pertains to methods of making a composite by associating graphene quantum dots with a carbon material, where the associating results in assembly of the graphene quantum dots on a surface of the carbon material. The methods of the present disclosure may also include a step of doping at least one of the graphene quantum dots and the carbon material with one or more dopants. Additional embodiments of the present disclosure pertain to composites that are formed by the methods of the present disclosure. In some embodiments, the composites are capable of mediating oxygen reduction reactions, oxygen evolution reactions, and combinations thereof. As such, the composites of the present disclosure can be utilized as an electrocatalyst for oxygen reduction reactions, oxygen evolution reactions, and combinations thereof. The composites of the present disclosure can also be utilized as a component of an energy storage device.
Abstract: In some embodiments, the present disclosure pertains to compositions for enhanced oil recovery. In some embodiments, such compositions include: (1) a first agent, wherein the first agent acts as a foam booster; (2) a second agent, wherein the second agent includes a sulfonated or sulfated anionic surfactant; a (3) a third agent, wherein the third agent includes an alkoxylated and anionic surfactant; and (4) a base liquid. In some embodiments, the compositions of the present disclosure further include a gas, such as nitrogen. Further embodiments of the present disclosure pertain to methods of formulating the aforementioned compositions for enhanced oil recovery. Additional embodiments of the present disclosure pertain to methods of recovering oil from a reservoir by utilizing the aforementioned compositions.
Type:
Application
Filed:
March 20, 2015
Publication date:
September 24, 2015
Applicant:
William Marsh Rice University
Inventors:
Maura Puerto, José Luis López Salinas, Clarence A. Miller, George Hirasaki
Abstract: Various embodiments of the present invention pertain to therapeutic compositions that comprise: (1) an active agent (e.g., paclitaxel); and (2) a nanoparticle (e.g., gold nanoparticle). In such embodiments, the active agent is covalently linked to the nanoparticle through a cleavable linker (e.g., a linker containing a hydrazone species). Other embodiments of the present invention pertain to methods of treating a condition in a subject by administering the above-described therapeutic compositions to the subject.
Abstract: This invention provides non-spherical nanoparticle compositions that are the reaction product of a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; wherein nanoparticle tetrapods comprise 75-100 number percent of the nanoparticle products.
Type:
Grant
Filed:
October 17, 2012
Date of Patent:
September 8, 2015
Assignee:
William Marsh Rice University
Inventors:
Subashini Asokan, Michael Sha-nang Wong
Abstract: In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
Type:
Grant
Filed:
October 10, 2013
Date of Patent:
September 8, 2015
Assignee:
WILLIAM MARSH RICE UNIVERSITY
Inventors:
James M. Tour, Jun Yao, Douglas Natelson, Lin Zhong, Tao He
Abstract: Compressive imaging apparatus employing multiple modulators in various optical schemes to generate the modulation patterns before the signal is recorded at a detector. The compressive imaging apparatus is equally valid when applying compressive imaging to structured light embodiments where the placement is shifted from the acquisition path between the subject and the detector into the illumination path between the source and the subject to be imaged.
Type:
Grant
Filed:
December 7, 2010
Date of Patent:
September 1, 2015
Assignee:
William Marsh Rice University
Inventors:
Kevin F. Kelly, Richard G. Baraniuk, Gary Woods, Ting Sun, Matthew Turner
Abstract: An active cancellation system may provide a first and second transmission gates that are fed with an input signal and a complimentary signal, respectively. The first transmission gate may be switched on/off, and a second transmission gate may remain off at all times. When switched off, the first transmission gate may provide a leakage signal resulting from leakage in current, especially at high input frequencies, which is detrimental to performance. The complimentary signal fed to the second transmission gate is out of phase with the input signal, but identical in amplitude. Thus, second transmission gate may output a signal that can cancel out the leakage signal from the first transmission gate.
Abstract: A device for modulating terahertz waves includes a metal layer (703) including a continuous metal portion (705) and island metal portions (707). The metal portions (705, 707) are separated by apertures (709). The device further includes a semiconductor layer (715) affixed to a bottom surface of the metal layer (703). The semiconductor layer (715) includes carrier regions (717) located below the apertures (709). The transmission of terahertz waves through the apertures (709) is modulated by changing a voltage applied across the aperture via voltage source (715). By injecting free carriers into carrier regions (717) due to a change of the voltage an extraordinary terahertz transmission effect of the metal layer (703) can be switched off. A small increase in the free-carrier absorption is significantly enhanced by the Fabry-Perot resonance, resulting in a substantial decrease in transmission.
Type:
Grant
Filed:
May 3, 2012
Date of Patent:
August 11, 2015
Assignee:
William Marsh Rice University
Inventors:
Quinfan Xu, Jie Shu, Daniel M. Mittleman, Ciyuan Qiu
Abstract: Various embodiments of the present invention provide therapeutic compositions for specifically targeting tumor cells. In some embodiments, the therapeutic compositions generally include: (1) a plurality of nanovectors; (2) one or more active agents associated with the nanovectors, where the one or more active agents have activity against the tumor cells; (3) one or more active agent enhancers associated with the nanovectors; and (4) one or more targeting agents associated with the nanovectors, where the one or more targeting agents have recognition activity for one or more markers of the tumor cells. Additional embodiments of the present invention pertain to methods of targeting tumor cells in a subject by administering one or more of the aforementioned therapeutic compositions to the subject. Further embodiments of the present invention pertain to methods of formulating the aforementioned therapeutic compositions for targeting tumor cells in a subject in a personalized manner.
Type:
Application
Filed:
March 15, 2013
Publication date:
August 6, 2015
Applicants:
William Marsh Rice University, The Methodist Hospital Research Institute
Inventors:
David S. Baskin, Daniela Marcano, Martyn A. Sharpe, James M. Tour
Abstract: In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.