Patents Assigned to Rohm and Haas Electronics Materials CMP Holdings, Inc.
  • Patent number: 10586708
    Abstract: The invention provides a method for polishing or planarizing a wafer of at least one of semiconductor, optical and magnetic substrates. The method includes rotating a polishing pad having radial feeder grooves in a polishing layer separating the polishing layer into polishing regions. The radial feeder grooves extend at least from a location adjacent the center to a location adjacent the outer edge. Each polishing region includes a series of biased grooves connecting a pair of adjacent radial feeder grooves. The series of biased grooves separate a land area and have inner walls closer to the center and outer walls closer to the outer edge. Pressing and rotating the wafer against the rotating polishing pad for multiple rotations polishes or planarizes the wafer with land areas wet by the overflowing polishing fluid.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: March 10, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: John Vu Nguyen, Tony Quan Tran, Jeffrey James Hendron, Jeffrey Robert Stack
  • Patent number: 10584265
    Abstract: The present invention provides aqueous chemical mechanical planarization polishing (CMP polishing) compositions comprising one or more dispersions of aqueous colloidal silica particles, preferably, spherical colloidal silica particles, one or more amine carboxylic acids having an isolectric point (pI) below 5, preferably, an acidic amino acid or a pyridine acid, and one or more ethoxylated anionic surfactants having a C6 to C10 alkyl, aryl or alkylaryl hydrophobic group, wherein the compositions have a pH of from 3 to 5. The compositions enable good silicon nitride removal and selectivity of nitride to oxide removal in polishing.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: March 10, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Naresh Kumar Penta, Yi Guo, David Mosley, Matthew Van Hanehem, Kwadwo E. Tettey
  • Patent number: 10573524
    Abstract: A process for chemical mechanical polishing a substrate containing titanium nitride and titanium is provided comprising: providing a polishing composition, containing, as initial components: water; an oxidizing agent; a linear polyalkylenimine polymer; a colloidal silica abrasive with a positive surface charge; a carboxylic acid; a source of ferric ions; and, optionally pH adjusting agent; wherein the polishing composition has a pH of 1 to 4; providing a chemical mechanical polishing pad, having a polishing surface; creating dynamic contact at an interface between the polishing pad and the substrate; and dispensing the polishing composition onto the polishing surface at or near the interface between the polishing pad and the substrate; wherein at least some of the titanium nitride and at least some of the titanium is polished away with a selectivity between titanium nitride and titanium.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: February 25, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Wei-Wen Tsai, Cheng-Ping Lee, Jiun-Fang Wang
  • Patent number: 10569384
    Abstract: The present invention concerns a chemical mechanical polishing pad having a polishing layer that possesses a consistent positive zeta potential across the entire surface. Also disclosed is a chemical mechanical polishing method using the polishing pad together with a positively charged slurry.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 25, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Matthew R. Gadinski, Mohammad T. Islam, Yi Guo, George C. Jacob
  • Patent number: 10569383
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad with a top surface, one or more apertures adapted to receive an endpoint detection window, an underside having a recessed portion and having one or more flanged endpoint detection windows (windows), each window having a flange adapted to fit snugly into the recessed portion of the underside of the polishing layer, the flange having a thickness slightly less than the depth of the recessed portion of the polishing layer (to allow for adhesive), having a detection area that fits snugly into an aperture in the polishing layer so that its top surface that lies substantially flush with the top surface of the polishing layer.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: February 25, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Stephen G. Pisklak, Jeffrey James Hendron
  • Patent number: 10557060
    Abstract: A process for chemical mechanical polishing a substrate containing tungsten and titanium is provided comprising: providing the substrate; providing a polishing composition, containing, as initial components: water; an oxidizing agent; an allylamine additive; a carboxylic acid; a source of iron ions; a colloidal silica abrasive with a positive surface charge; and, optionally pH adjusting agent; providing a chemical mechanical polishing pad, having a polishing surface; creating dynamic contact at an interface between the polishing pad and the substrate; and dispensing the polishing composition onto the polishing surface at or near the interface between the polishing pad and the substrate; wherein the tungsten (W) is selectively polished away from the substrate relative to the titanium (Ti).
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: February 11, 2020
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Lin-Chen Ho, Wei-Wen Tsai, Cheng-Ping Lee, Jiun-Fang Wang
  • Patent number: 10508221
    Abstract: The present invention provides aqueous chemical mechanical planarization (CMP) polishing compositions comprising one or more dispersions of colloidal silica particles having a zeta potential of from +5 to +50 mV and having one or more aminosilane group, preferably, elongated, bent or nodular colloidal silica particles, or, more preferably, such particles which contain a cationic nitrogen atom, and at least one amine heterocycle carboxylic acid having an isolectric point (pI) of from 2.5 to 5, preferably, from 3 to 4. The compositions have a pH of from 2.5 to 5.3. Preferably, the amine heterocycle carboxylic acid is an amine-containing heterocyclic monocarboxylic acid, such as nicotinic acid, picolinic acid, or isonicotinic acid. The compositions enable enhanced oxide:nitride removal rate ratios.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, David Mosley, Naresh Kumar Penta
  • Patent number: 10464187
    Abstract: A CMP polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising a (i) curative of from 15 to 30 wt. % of an amine initiated polyol having an average of from 3 to less than 5 hydroxyl groups and a number average molecular weight of 150 to 400, and from 70 to 85 wt. % of an aromatic diamine and a (ii) polyisocyanate prepolymer having a number average molecular weight of from 600 to 5,000 and having an unreacted isocyanate content ranging from 6.5 to 11%. The CMP polishing pad has a tunable tan-delta peak temperature at from 50 to 80° C. which has a value of from 0.2 to 0.8 at the tan-delta peak temperature and is useful for polishing a variety of substrates.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 5, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bainian Qian, Kancharla-Arun K. Reddy, George C. Jacob, Marty W. DeGroot
  • Patent number: 10464188
    Abstract: The present invention concerns a chemical mechanical polishing pad having a polishing layer that possesses a consistent positive zeta potential across the entire surface. Also disclosed is a chemical mechanical polishing method using the polishing pad together with a positively charged slurry.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: November 5, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Matthew R. Gadinski, Mohammad T. Islam, Yi Guo, George C. Jacob
  • Patent number: 10465097
    Abstract: The present invention provides chemical mechanical (CMP) polishing pads for polishing a substrate chosen from a semiconductor substrate comprising the CMP polishing pad and having one or more endpoint detection windows which is the cured product of a reaction mixture of a linear cycloaliphatic urethane macromonomer having two (meth)acrylate endgroups bound via cycloaliphatic dicarbamate esters to a polyether, polycarbonate or polyester chain having an average molecular weight of from 450 to 2,000, or an cycloaliphatic urethane oligomer thereof, and an aliphatic initiator, wherein the total isocyanate content in the urethane macromonomer ranges from 3.3 to 10 wt. %, and, further wherein, the composition comprises less than 5 wt. % of unreacted (meth)acrylate monomer and is substantially free of unreacted isocyanate. Regardless of their hardness or lack thereof, the endpoint detection windows provide excellent durability when wet.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: November 5, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Matthew R. Gadinski
  • Patent number: 10391606
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing three dimensional semiconductor or memory substrates comprising a polishing layer of a polyurethane reaction product of a thermosetting reaction mixture of a curative of 4,4?-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) or mixtures of MCDEA and 4,4?-methylene-bis-o-(2-chloroaniline) (MbOCA), and a polyisocyanate prepolymer formed from one or two aromatic diisocyanates, such as toluene diisocyanate (TDI), or a mixture of an aromatic diisocyanate and an alicyclic diisocyanate, and a polyol of polytetramethylene ether glycol (PTMEG), polypropylene glycol (PPG), or a polyol blend of PTMEG and PPG and having an unreacted isocyanate (NCO) concentration of from 8.6 to 11 wt. %. The polyurethane in the polishing layer has a Shore D hardness according to ASTM D2240-15 (2015) of from 60 to 90, a shear storage modulus (G?) at 65° C.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: August 27, 2019
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Jonathan G. Weis, Nan-Rong Chiou, George C. Jacob, Bainian Qian
  • Patent number: 10377921
    Abstract: A process for chemical mechanical polishing a substrate containing cobalt and TiN to planarize the surface and at least improve surface topography of the substrate. The process includes providing a substrate containing cobalt and TiN; providing a polishing composition, containing, as initial components: water; an oxidizing agent; aspartic acid or salts thereof; and, colloidal silica abrasives with diameters of ?25 nm; and, providing a chemical mechanical polishing pad, having a polishing surface; creating dynamic contact at an interface between the polishing pad and the substrate; and dispensing the polishing composition onto the polishing surface at or near the interface between the polishing pad and the substrate; wherein some of the cobalt is polished away to planarize the substrate to provide improved cobalt:TiN removal rate selectivity.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 13, 2019
    Assignee: Rohm and Haas Electronics Materials CMP Holdings, Inc.
    Inventors: Murali G. Theivanayagam, Hongyu Wang, Matthew Van Hanehem
  • Patent number: 10316218
    Abstract: The present invention provides aqueous CMP polishing compositions comprising a from 0.5 to 30 wt. %, based on the total weight of the composition of a dispersion of a plurality of elongated, bent or nodular silica particles which contain a cationic nitrogen atom, and from 0.001 to 0.5 wt. %, preferably from 10 to 500 ppm, of a cationic copolymer of a diallylamine salt having a cationic amine group, such as a diallylammonium halide, or a diallylalkylamine salt having a cationic amine group, such as a diallylalkylammonium salt, or mixtures of the copolymers, wherein the compositions have a pH of from 1 to 4.5. Preferably, the cationic copolymer of a diallylamine salt having a cationic amine group comprises a copolymer of diallylammonium chloride and sulfur dioxide and the copolymer of the diallylalkylamine salt having a cationic amine group comprises a copolymer of diallylmonomethylammonium halide, e.g. chloride, and sulfur dioxide.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: June 11, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Naresh Kumar Penta, Julia Kozhukh, David Mosley, Kancharla-Arun K. Reddy, Matthew Van Hanehem
  • Patent number: 10293456
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing, for example, a semiconductor substrate, having one or more endpoint detection windows (windows) which at a thickness of 2 mm would have a UV cut-off at a wavelength of 325 nm or lower which are the product of a reaction mixture of (A) from 30 to 56 wt. % of one or more cycloaliphatic diisocyanates or polyisocyanates with (B) from 43 to 69.9999 a polyol mixture of (i) a polymeric diol having an average molecular weight of from 500 to 1,500, such as a polycarbonate diol for hard windows and a polyether polyol for soft windows and (ii) a triol having an average to molecular weight of from 120 to 320 in a weight ratio of (B)(i) polymeric diol to (B)(ii) triol ranging from 1.6:1 to 5.2:1, and a catalyst, preferably a secondary or tertiary amine or bismuth neodecanoate, all weight percent's based on the total solids weight of the reaction mixture.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: May 21, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Nan-Rong Chiou, Mohammad T. Islam, George C. Jacob, Teresa Brugarolas Brufau
  • Patent number: 10286518
    Abstract: A process for chemical mechanical polishing a substrate containing tungsten is disclosed to reduce corrosion rate and inhibit dishing of the tungsten and erosion of underlying dielectrics. The process includes providing a substrate; providing a polishing composition, containing, as initial components: water; an oxidizing agent; a thiolalkoxy compound; a dicarboxylic acid, a source of iron ions; a colloidal silica abrasive; and, optionally a pH adjusting agent; providing a chemical mechanical polishing pad, having a polishing surface; creating dynamic contact at an interface between the polishing pad and the substrate; and dispensing the polishing composition onto the polishing surface at or near the interface between the polishing pad and the substrate; wherein some of the tungsten (W) is polished away from the substrate, corrosion rate is reduced, dishing of the tungsten (W) is inhibited as well as erosion of dielectrics underlying the tungsten (W).
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: May 14, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Lin-Chen Ho, Wei-Wen Tsai, Cheng-Ping Lee
  • Patent number: 10259099
    Abstract: The method forms a porous polyurethane polishing pad by coagulating thermoplastic polyurethane to create a porous matrix having large pores extending upward from a base surface and open to an upper surface. The large pores are interconnected with small pores. Heating a press to temperature below or above the softening onset temperature of the thermoplastic polyurethane forms a series of pillows. Plastic deforming side walls of the pillow structures forms downwardly sloped side walls. The downwardly sloped side walls extend from all sides of the pillow structures. The large pores open to the downwardly sloped sidewalls are less vertical than the large pores open to the top polishing surface and are offset 10 to 60 degrees from the vertical direction.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: April 16, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Koichi Yoshida, Kazutaka Miyamoto, Katsumasa Kawabata, Henry Sanford-Crane, Hui Bin Huang, George C. Jacob, Shuiyuan Luo
  • Patent number: 10233356
    Abstract: The invention is an aqueous slurry useful for chemical mechanical polishing a semiconductor substrate having cobalt or cobalt alloy containing features containing Co0. The slurry includes 0.1 to 2 wt % hydrogen peroxide oxidizing agent (?), 0.5 to 3 wt % colloidal silica particles (?), a cobalt corrosion inhibitor, 0.5 to 2 wt % complexing agent (?) selected from at least one of L-aspartic acid, nitrilotriacetic acid, nitrilotri(methylphosphonic acid), ethylenediamine-N,N?-disuccinic acid trisodium salt, and ethylene glycol-bis (2aminoethylether)-N,N,N?,N?-tetraacetic acid, and balance water having a pH of 5 to 9. The total concentrations remain within the following formulae as follows: wt % (?)+wt % (?)=1 to 4 wt % for polishing the cobalt or cobalt alloy; wt % (?)?2*wt % (?) for limiting static etch of the cobalt or cobalt alloy; and wt % (?)+wt % (?)?3*wt % (?) for limiting static etch.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 19, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Murali G. Theivanayagam, Hongyu Wang
  • Patent number: 10208154
    Abstract: A two component composition for making chemical mechanical polishing pad for polishing a semiconductor substrate is provided comprising a liquid aromatic isocyanate component having an unreacted isocyanate (NCO) concentration of from 15 to 40 wt. %, based on the total solids weight of the aromatic isocyanate component, such as methylene di(phenylisocyanate) (MDI), a liquid polyol component of a polyol having a polyether backbone and having from 5 to 7 hydroxyl groups per molecule, and a curative of one or more polyamine or diamine, wherein the reaction mixture comprises 50 to 65 wt. % of hard segment materials, based on the total weight of the reaction mixture. The composition when mixed cured to form a polyurethane reaction product. Also provided are CMP polishing pads made from the polyurethane reaction product by spraying the composition into a mold.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: February 19, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Bryan E. Barton, Michael E. Mills
  • Patent number: 10207388
    Abstract: The present invention provides a chemical mechanical (CMP) polishing pad for polishing, for example, a semiconductor substrate, having one or more endpoint detection windows (windows) which at a thickness of 2 mm would have a UV cut-off at a wavelength of 325 nm or lower which are the product of a reaction mixture of (A) from 30 to 56 wt. % of one or more cycloaliphatic diisocyanates or polyisocyanates with (B) from 43 to 69.9999 a polyol mixture of (i) a polymeric diol having an average molecular weight of from 500 to 1,500, such as a polycarbonate diol for hard windows and a polyether polyol for soft windows and (ii) a triol having an average molecular weight of from 120 to 320 in a weight ratio of (B)(i) polymeric diol to (B)(ii) triol ranging from 1.6:1 to 5.2:1, and a catalyst, preferably a secondary or tertiary amine, all weight percent's based on the total solids weight of the reaction mixture.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: February 19, 2019
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Dow Global Technologies LLC
    Inventors: Nan-Rong Chiou, Mohammad T. Islam, George C. Jacob
  • Patent number: 10181408
    Abstract: A process for chemical mechanical polishing a substrate containing tungsten is disclosed to reduce corrosion rate and inhibit dishing of the tungsten and erosion of underlying dielectrics. The process includes providing a substrate; providing a polishing composition, containing, as initial components: water; an oxidizing agent; a polyglycol or polyglycol derivative; a dicarboxylic acid, a source of iron ions; a colloidal silica abrasive; and, optionally a pH adjusting agent; providing a chemical mechanical polishing pad, having a polishing surface; creating dynamic contact at an interface between the polishing pad and the substrate; and dispensing the polishing composition onto the polishing surface at or near the interface between the polishing pad and the substrate; wherein some of the tungsten (W) is polished away from the substrate, corrosion rate is reduced, dishing of the tungsten (W) is inhibited as well as erosion of dielectrics underlying the tungsten (W).
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: January 15, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Lin-Chen Ho, Wei-Wen Tsai, Cheng-Ping Lee