Patents Assigned to Sandia
  • Patent number: 6386015
    Abstract: An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of aerosol collection, classification, concentration (enrichment), and characterization processes onto a single substrate or layered stack of such substrates. By taking advantage of modern micro-machining capabilities, an entire suite of discrete laboratory aerosol handling and characterization techniques can be combined in a single portable device that can provide a wealth of data on the aerosol being sampled. The ALOC offers parallel characterization techniques and close proximity of the various characterization modules helps ensure that the same aerosol is available to all devices (dramatically reducing sampling and transport errors). Micro-machine fabrication of the ALOC significantly reduces unit costs relative to existing technology, and enables the fabrication of small, portable ALOC devices, as well as the potential for rugged design to allow operation in harsh environments.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: May 14, 2002
    Assignee: Sandia Corporation
    Inventors: Daniel J. Rader, John R. Torczynski, Karl Wally, John E. Brockmann
  • Patent number: 6389418
    Abstract: A method of data mining represents related patents in a multidimensional space. Distance between patents in the multidimensional space corresponds to the extent of relationship between the patents. The relationship between pairings of patents can be expressed based on weighted combinations of several predicates. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the patents.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: May 14, 2002
    Assignee: Sandia Corporation
    Inventors: Kevin W. Boyack, V. Gerald Grafe, David K. Johnson, Brian N. Wylie
  • Patent number: 6388260
    Abstract: Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: May 14, 2002
    Assignee: Sandia Corporation
    Inventors: F. Patrick Doty, Ilya Zwieback, Warren Ruderman
  • Patent number: 6381792
    Abstract: A floating modular bridge has a plurality of modules of two types. Most modules are flexible fabric envelopes having a parallelogram profile that attains shape and strength when filled on site with a rigid foam that is injected into the envelope. The other module is a keystone that has a trapazoidal profile. These modules are strung together by cables to make a lightweight bridge.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: May 7, 2002
    Assignee: Sandia Corporation
    Inventor: Ronald L. Woodfin
  • Patent number: 6383402
    Abstract: The invention generally relates to various aspects of a plasma process, and more specifically the monitoring of such plasma processes. One aspect relates in at least some manner to calibrating or initializing a plasma monitoring assembly. This type of calibration may be used to address wavelength shifts, intensity shifts, or both associated with optical emissions data obtained on a plasma process. A calibration light may be directed at a window through which optical emissions data is being obtained to determine the effect, if any, that the inner surface of the window is having on the optical emissions data being obtained therethrough, the operation of the optical emissions data gathering device, or both. Another aspect relates in at least some manner to various types of evaluations which may be undertaken of a plasma process which was run, and more typically one which is currently being run, within the processing chamber.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: May 7, 2002
    Assignee: Sandia Corporation
    Inventors: Michael Lane Smith, Jr., Pamela Denise Peardon Ward, Joel O'Don Stevenson
  • Patent number: 6384473
    Abstract: An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: May 7, 2002
    Assignee: Sandia Corporation
    Inventors: Kenneth A. Peterson, Robert D. Watson
  • Patent number: 6379988
    Abstract: A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: April 30, 2002
    Assignee: Sandia Corporation
    Inventors: Kenneth A. Peterson, William R. Conley
  • Patent number: 6381488
    Abstract: A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: April 30, 2002
    Assignee: Sandia Corporation
    Inventors: Fred M. Dickey, Scott C. Holswade
  • Patent number: 6375759
    Abstract: A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: April 23, 2002
    Assignee: Sandia Corporation
    Inventors: Todd R. Christenson, Terry J. Garino, Eugene L. Venturini
  • Patent number: 6377878
    Abstract: A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: April 23, 2002
    Assignee: Sandia Corporation
    Inventors: John T. Feddema, Brian J. Driessen, Kwan S. Kwok
  • Patent number: 6373064
    Abstract: An improved semiconductor radiation detector which involves engineering the internal electrical field through an external infrared light source. A planar semiconductor radiation detector is applied with a bias voltage, and an optical light beam with a selected photon energy is used to illuminate the detector and engineer the internal electric field. Different light beam intensities or photon energies produce different distributions of the internal electric field. The width of the electric field can be fine-tuned by changing the optical beam intensity and wavelength, so that the radiation detector performance can be optimized. The detector is portable, small in size, and operates at room temperature.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: April 16, 2002
    Assignee: Sandia Corporation
    Inventors: H. Walter Yao, Ralph B. James
  • Patent number: 6368775
    Abstract: A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: April 9, 2002
    Assignee: Sandia Corporation
    Inventors: Barrett George Potter, Jr., Kelly Simmons Potter
  • Patent number: 6365867
    Abstract: A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: April 2, 2002
    Assignee: Sandia Corporation
    Inventor: Frederick M Hooper
  • Patent number: 6365428
    Abstract: A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: April 2, 2002
    Assignee: Sandia Corporation
    Inventors: Walter J. Zubrzycki, Gregory A. Vawter, Andrew A. Allerman
  • Patent number: 6360549
    Abstract: The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: March 26, 2002
    Assignee: Sandia Corporation
    Inventors: Barry L. Spletzer, Diane Schafer Callow, Lisa C. Marron, Jonathan R. Salton
  • Patent number: 6358854
    Abstract: A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20&mgr; spectral range.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: March 19, 2002
    Assignee: Sandia Corporation
    Inventors: James G. Fleming, Shawn-Yu Lin
  • Patent number: 6357968
    Abstract: A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak “bow-tie” shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: March 19, 2002
    Assignee: Sandia Corporation
    Inventors: Brian P. Dwyer, Willis E. Stewart, Stephen F. Dwyer
  • Patent number: 6356675
    Abstract: A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.
    Type: Grant
    Filed: December 1, 1995
    Date of Patent: March 12, 2002
    Assignee: Sandia Corporation
    Inventor: Jonathan David Weiss
  • Patent number: 6355147
    Abstract: An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: March 12, 2002
    Assignee: Sandia Corporation
    Inventors: Stewart K. Griffiths, Robert H. Nilson, Jill M. Hruby
  • Patent number: 6355909
    Abstract: An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: March 12, 2002
    Assignees: Sandia Corporation, Mattson Technology Inc.
    Inventors: Stewart K. Griffiths, Robert H. Nilson, Brad S. Mattson, Stephen E. Savas