Patents Assigned to Sandisk 3D LLC
  • Patent number: 9064547
    Abstract: A 3D array of nonvolatile memory has each read/write element accessed at a crossing between a word line and a bit line. The read/write element forms a tubular electrode having an outside shell of R/W material enclosing an oxide core. In a rectangular form, one side of the electrode contacts the word line and another side contacts the bit line. The thickness of the shell rather than its surface areas in contact with the word line and bit line determines the conduction cross-section and therefore the resistance. By adjusting the thickness of the shell, independent of its contact area with either the word line or bit line, each read/write element can operate with a much increased resistance and therefore much reduced current. Processes to manufacture a 3D array with such tubular R/W elements 3D array are also described.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: June 23, 2015
    Assignee: SanDisk 3D LLC
    Inventors: Raul Adrian Cernea, Yung-Tin Chen, George Samachisa
  • Patent number: 9065040
    Abstract: A method of fabricating a resistive random access memory (ReRAM) cell may include forming a set of nanolaminate structures over an electrode, such that each structure includes at least one first element oxide layer and at least one second element oxide layer. The overall set is operable as a resistive switching layer in a ReRAM cell. In this set, an average atomic ratio of the first element to the second element is different in at least two nanolaminate structures. This ratio may be less in nanolaminate structures that are closer to electrodes than in the middle nanolaminate structures. Alternatively, this ratio may increase from one end of the set to another. The first element may be less electronegative than the second elements. The first element may be hafnium, while the second element may be one of zirconium, aluminum, titanium, tantalum, or silicon.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: June 23, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Chien-Lan Hsueh, Vidyut Gopal, Randall J. Higuchi, Takeshi Yamaguchi
  • Patent number: 9065044
    Abstract: A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 23, 2015
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Publication number: 20150170742
    Abstract: Operating ReRAM memory is disclosed herein. The memory cells may be trained prior to initially programming them. The training may help to establish a percolation path. In some aspects, a transistor limits current of the memory cell when training and programming. A higher current limit is used during training, which conditions the memory cell for better programming. The non-memory may be operated in unipolar mode. The memory cells can store multiple bits per memory cell. A memory cell can be SET directly from its present state to one at least two data states away. A memory cell can be RESET directly to the state having the next highest resistance. Program conditions, such as pulse width and/or magnitude, may depend on the state to which the memory cell is being SET. A higher energy can be used for programming higher current states.
    Type: Application
    Filed: January 7, 2015
    Publication date: June 18, 2015
    Applicant: SANDISK 3D LLC
    Inventors: Abhijit Bandyopadhyay, Roy E. Scheuerlein, Chandrasekhar R. Gorla, Brian Le
  • Patent number: 9059401
    Abstract: A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 16, 2015
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Publication number: 20150162338
    Abstract: A method of forming sidewall gates for vertical transistors includes depositing a gate dielectric layer over polysilicon channel structures, and depositing a gate polysilicon layer over the gate dielectric. The gate polysilicon layer is then etched back to form separated gate electrodes. Filler portions are then formed between gate electrodes, which are then etched from the top down while their sides are protected.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 11, 2015
    Applicant: SanDisk 3D LLC
    Inventors: Akira Nakada, Michiaki Sano, Naohito Yanagida, Teruyuki Mine
  • Patent number: 9053766
    Abstract: A three dimensional monolithic memory array of non-volatile storage elements includes a plurality of word lines and a plurality of bit lines. The plurality of bit lines are grouped into columns. Performing memory operation on the non-volatile storage elements includes selectively connecting bit lines to sense amplifiers using selection circuits that include a storage device, a select circuit connected to the storage device and one or more level shifters providing two or more interfaces to the respective selection circuit.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: June 9, 2015
    Assignee: SANDISK 3D, LLC
    Inventor: Tianhong Yan
  • Patent number: 9054307
    Abstract: Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from alloys of transition metals. Some examples of such alloys include chromium containing alloys that may also include nickel, aluminum, and/or silicon. Other examples include tantalum and/or titanium containing alloys that may also include a combination of silicon and carbon or a combination of aluminum and nitrogen. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature processing. In some embodiments, the breakdown voltage of a current limiting layer is at least about 8V. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layers while maintaining their performance.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: June 9, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Takeshi Yamaguchi
  • Patent number: 9054308
    Abstract: A fabrication process for a resistance-switching memory cell uses metal oxide as a resistance-switching material. A metal oxide film having an initial stoichiometry is deposited on an electrode using atomic layer deposition. A changed stoichiometry is provided for a portion of the metal oxide film using a plasma reduction process, separate from the atomic layer deposition, and another electrode is formed adjacent to the changed stoichiometry portion. The film deposition and the plasma reduction can be performed in separate chambers where conditions such as temperature are optimized. The metal oxide film may be deposited on a vertical sidewall in a vertical bit line 3d memory device. Optionally, the mean free path of hydrogen ions during the plasma reduction process is adjusted to increase the uniformity of the vertical metal oxide film. The adjustment can involve factors such as RF power, pressure and a bias of the wafer.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: June 9, 2015
    Assignee: SanDisk 3D LLC
    Inventors: Tong Zhang, Timothy James Minvielle, Chu-Chen Fu, Wipul Jayasekara
  • Patent number: 9047943
    Abstract: Methods for reducing power consumption of a non-volatile storage system and reducing first read latency are described. The non-volatile storage system may include a cross-point memory array. In some embodiments, during a standby mode, the memory array may be biased such that both word lines and bit lines are set to ground. During transition of the memory array from the standby mode to a read mode, a selected word line comb may be set to a read voltage while the unselected word lines and the bit lines remain at ground. During the read mode, memory cells connected to the selected bit lines and the selected word line comb may be sensed while the selected bit lines are biased to a selected bit line voltage equal to or close to ground and the unselected bit lines are left floating after initially being set to ground.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: June 2, 2015
    Assignee: SANDISK 3D LLC
    Inventor: Chang Siau
  • Patent number: 9047949
    Abstract: A reversible resistance-switching metal-insulator-metal (MIM) stack is provided which can be set to a low resistance state with a first polarity signal and reset to a higher resistance state with a second polarity signal. The first polarity signal is opposite in polarity than the second polarity signal. In one approach, the MIM stack includes a carbon-based reversible resistivity switching material such as a carbon nanotube material. The MIM stack can further include one or more additional reversible resistivity switching materials such as metal oxide above and/or below the carbon-based reversible resistivity switching material. In another approach, a metal oxide layer is between separate layers of carbon-based reversible resistivity switching material.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: June 2, 2015
    Assignee: SanDisk 3D LLC
    Inventors: Jingyan Zhang, Utthaman Thirunavukkarasu, April D Schricker
  • Patent number: 9048425
    Abstract: Embodiments generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching capacity by using multiple layers of variable resistance layers. In one embodiment, the resistive switching element comprises at least three layers of variable resistance materials to increase the number of logic states. Each variable resistance layer may have an associated high resistance state and an associated low resistance state. As the resistance of each variable resistance layer determines the digital data bit that is stored, the multiple variable resistance layers per memory element allows for additional data storage without the need to further increase the density of nonvolatile memory devices.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: June 2, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventor: Tony P. Chiang
  • Patent number: 9047940
    Abstract: Provided are resistive random access memory (ReRAM) cells forming arrays and methods of operating such cells and arrays. The ReRAM cells of the same array may have the same structure, such as have the same bottom electrodes, top electrodes, and resistive switching layers. Yet, these cells may be operated in a different manner. For example, some ReRAM cells may be restively switched using lower switching voltages than other cells. The cells may also have different data retention characteristics. These differences may be achieved by using different forming operations for different cells or, more specifically, flowing forming currents in different directions for different cells. The resulting conductive paths formed within the resistive switching layers are believed to switch at or near different electrode interfaces, i.e., within a so called switching zone. In some embodiments, a switching zone of a ReRAM cell may be changed even after the initial formation.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: June 2, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Federico Nardi, Yun Wang
  • Patent number: 9047983
    Abstract: Methods for operating a semiconductor memory array including dynamically adjusting control line voltages (e.g., unselected word line or unselected bit line voltages) based on one or more array conditions associated with the semiconductor memory array are described. The one or more array conditions may include a temperature associated with the semiconductor memory array or a particular number of write cycles associated with the semiconductor memory array. In some embodiments, an intermediate voltage is generated based on the one or more array conditions and applied to the unselected word lines and the unselected bit lines of the semiconductor memory array. The one or more intermediate voltages may be generated such that a first voltage difference across unselected memory cells sharing a selected word line is different from a second voltage difference across other unselected memory cells sharing a selected bit line based on the one or more array conditions.
    Type: Grant
    Filed: April 19, 2014
    Date of Patent: June 2, 2015
    Assignee: SANDISK 3D LLC
    Inventors: Roy E. Scheuerlein, George Samachisa
  • Patent number: 9048422
    Abstract: A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
    Type: Grant
    Filed: May 3, 2014
    Date of Patent: June 2, 2015
    Assignee: SanDisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Patent number: 9040413
    Abstract: A nonvolatile memory device contains a resistive switching memory element with improved device switching performance and lifetime by custom tailoring the average concentration of defects in the resistive switching film and methods of forming the same. The nonvolatile memory element includes a first electrode layer, a second electrode layer, and a resistive switching layer disposed between the first electrode layer and the second electrode layer. The resistive switching layer comprises a first sub-layer and a second sub-layer, wherein the first sub-layer has more defects than the first sub-layer. A method includes forming a first sub-layer on the first electrode layer by a first ALD process and forming a second sub-layer on the first sub-layer by a second ALD process, where the first sub-layer has a different amount of defects than the second sub-layer.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 26, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Randall J. Higuchi, Chien-Lan Hsueh, Yun Wang
  • Patent number: 9034689
    Abstract: Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air break. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: May 19, 2015
    Assignee: SanDisk 3D LLC
    Inventors: Deepak C. Sekar, Franz Kreupl, Peter Rabkin, Chu-Chen Fu
  • Publication number: 20150131360
    Abstract: Vertical 1T-1R memory cells, memory arrays of vertical 1T-1R memory calls, and methods of forming such memory cells and memory arrays are described. The memory cells each include a vertical transistor and a resistivity-switching element coupled in series with and disposed above or below the vertical transistor. The vertical transistor includes a controlling electrode coupled to a word line that is above or below the vertical transistor. The controlling electrode is disposed on a sidewall of the vertical transistor. Each vertical transistor includes a first terminal coupled to a bit line, a second terminal comprising the controlling electrode coupled to a word line, and a third terminal coupled to the resistivity-switching element.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: SanDisk 3D LLC
    Inventor: Christopher J. Petti
  • Patent number: 9030859
    Abstract: A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 12, 2015
    Assignee: SanDisk 3D LLC
    Inventors: Roy E. Scheuerlein, Raul-Adrian Cernea
  • Patent number: 9025372
    Abstract: A monolithic three-dimensional memory array is provided that includes a first memory level and a second memory level disposed above or below the first memory level. The first memory level includes a plurality of vertically oriented p-i-n diodes that each include a bottom heavily doped p type region. The second memory level includes a plurality of vertically oriented p-i-n diodes that each include a bottom heavily doped n type region. Numerous other aspects are also provided.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 5, 2015
    Assignee: SanDisk 3D LLC
    Inventor: Scott Brad Herner