Patents Assigned to SCIENTIA VASCULAR, INC.
  • Patent number: 11951267
    Abstract: The present disclosure relates to guidewire devices having shapeable tips and effective torquability. A guidewire device includes a core having a proximal section and a tapered distal section. A tube structure is coupled to the core such that the tapered distal section extends into the tube structure. The tube structure includes a plurality of bypass cuts formed tangentially within the tube structure to increase the flexibility of the tube structure and to reduce the tendency of resilient forces from the tube structure to disrupt a shaped distal tip of the guidewire device.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: April 9, 2024
    Assignee: Scientia Vascular, Inc.
    Inventors: John A Lippert, Edward J. Snyder, Clark C. Davis
  • Patent number: 11890434
    Abstract: The present disclosure relates to guidewire devices having shapeable tips and effective torquability. A guidewire device includes a core having a proximal section and a tapered distal section. A tube structure is coupled to the core such that the tapered distal section of the core extends into and distally beyond the tube structure. The portion of the core extending distally beyond the tube forms a shapeable tip. One or more coils also extend distally beyond the tube. The tip is configured to reduce the tendency of resilient forces from the tube structure to disrupt a customized shape of the tip.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: February 6, 2024
    Assignee: SCIENTIA VASCULAR, INC.
    Inventors: John A Lippert, Edward J. Snyder
  • Patent number: 11452541
    Abstract: An intravascular device, such as s guidewire device, includes a hollow proximal section and a hollow distal section joined to the proximal section and extending distally from the proximal section to form a continuous lumen extending from a proximal end of the device to a distal end of the device. An inner member extends from the proximal end to the distal end and is joined to the distal end. The inner member is translatable within the lumen in response to applied tension. At least the distal section includes a micro-fabricated cutting pattern that enables deflection of the distal end in response to the application of tension to the inner member.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 27, 2022
    Assignee: SCIENTIA VASCULAR, INC.
    Inventors: John A. Lippert, Edward J. Snyder
  • Patent number: 11406791
    Abstract: Polymer catheters and guidewires for use in intravascular surgery, and more particularly polymer catheters and guidewires micro-machined with a micro-cutting machine to provide sufficient flexibility to travel through a patient's vasculature while retaining sufficient torquability to transmit torque from a proximal end to the distal end of the catheter or guidewire, and methods of producing the same.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 9, 2022
    Assignee: SCIENTIA VASCULAR, INC.
    Inventors: John Lippert, Edward J. Snyder
  • Patent number: 11369351
    Abstract: The present disclosure relates to interventional devices such as catheters and guidewire devices having micro-fabricated features for providing flexibility while maintaining good torquability. An interventional device includes an elongated member (500) having an arrangement of fenestrations which define a plurality of axially extending beams coupling a plurality of circumferentially extending rings. The fenestrations are arranged so that the resulting beams form a distributed, non-helical and non-linear pattern along the length of the elongated member. The pattern of fenestrations thereby minimizes or eliminates preferred bending axes.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: June 28, 2022
    Assignee: SCIENTIA VASCULAR, INC.
    Inventors: Clark C. Davis, John A. Lippert