Micro-fabricated medical device having a non-helical cut arrangement

- SCIENTIA VASCULAR, INC.

The present disclosure relates to interventional devices such as catheters and guidewire devices having micro-fabricated features for providing flexibility while maintaining good torquability. An interventional device includes an elongated member (500) having an arrangement of fenestrations which define a plurality of axially extending beams coupling a plurality of circumferentially extending rings. The fenestrations are arranged so that the resulting beams form a distributed, non-helical and non-linear pattern along the length of the elongated member. The pattern of fenestrations thereby minimizes or eliminates preferred bending axes.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to PCT Application No. PCT/US2018/034756, filed May 25, 2018 entitled “MICRO-FABRICATED MEDICAL DEVICE HAVING A NON-HELICAL CUT ARRANGEMENT,” which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/511,605, filed on May 26, 2017 and titled “Micro-Fabricated Medical Device having a Distributed Cut Arrangement” and to U.S. Provisional Patent Application Ser. No. 62/595,425, filed on Dec. 6, 2017 and titled “Micro-Fabricated Medical Device having a Non-Helical Cut Arrangement.” All of the aforementioned applications are incorporated herein by reference in their entirety.

BACKGROUND

Interventional devices such as guidewires and catheters are frequently utilized in the medical field to perform delicate procedures deep within the human body. Typically, a catheter is inserted into a patient's femoral, radial, carotid, or jugular vessel and navigated through the patient's vasculature to the heart, brain, or other targeted anatomy as required. Often, a guidewire is first routed to the targeted anatomy, and one or more catheters are subsequently passed over the guidewire and routed to the targeted anatomy. Once in place, the catheter can be used to deliver drugs, stents, embolic devices, radiopaque dyes, or other devices or substances for treating the patient in a desired manner.

In many applications, such an interventional device must be angled through the tortuous bends and curves of a vasculature passageway to arrive at the targeted anatomy. For example, directing a guidewire and/or catheter to portions of the neurovasculature requires passage through the internal carotid artery and other tortuous paths. Such an interventional device requires sufficient flexibility, particularly closer to its distal end, to navigate such tortuous pathways. However, other design aspects must also be considered. For example, the interventional device must also be able to provide sufficient torquability (i.e., the ability to transmit torque applied at the proximal end all the way to the distal end), pushability (i.e., the ability to transmit axial push to the distal end rather than bending and binding intermediate portions), and structural integrity for performing intended medical functions.

With respect to torquability, as a greater length of an interventional device (such as a guidewire) is passed into and through a vasculature passageway, the amount of frictional surface contact between the guidewire and the vasculature tissue increases, hindering easy movement through the vasculature passage. By transmitting torqueing forces from the proximal end to the distal end allows the guidewire to rotate and overcome the frictional forces so that further advancement and positioning is possible.

BRIEF SUMMARY

The present disclosure relates to interventional devices (such as guidewires and catheters) which have micro-fabricated features for providing flexibility while maintaining good torquability. In one embodiment, an interventional device includes an elongated member having a wall and an interior lumen. The elongated member includes a plurality of fenestrations which define a plurality of axially extending beams and a plurality of circumferentially extending rings. The beams are arranged along the length of the elongated member to form a non-helical and non-linear pattern functioning to optimally distribute bending axes to beneficially minimize or eliminate preferred bending directions of the elongated member.

Some interventional devices include cuts/fenestrations intended to increase flexibility at certain sections of the interventional device. However, typical guidewire and catheter devices including these features end up with one or more preferred bending directions as a result of the structural arrangement and spacing of the fenestrations. Although potentially useful in some applications, preferred bending directions often have a detrimental effect on the navigation capabilities of the device. For example, in some circumstances where an operator is attempting to reach a targeted anatomical area, the preferred bending direction(s) will tend to make the device “snap” toward a preferred bending direction. If the preferred bending direction is not aligned with the desired direction of movement, it can be difficult for the operator to guide the device to the target.

Some interventional devices include fenestrations formed in a helical arrangement along a length of the device. While such helical arrangements may be more beneficial than a simple alternating cut pattern in reducing preferred bending bias, the helical arrangement can itself form undesirable preferred bending patterns within the device. For example, an interventional device having a helical cut pattern is more likely to coil or twist into a curved shape that coincides with the direction of helical rotation about the device as opposed to curving in the opposite direction. In certain anatomical circumstances, this tendency may introduce navigation difficulties and/or may inhibit the user's ability to smoothly control the device.

One or more embodiments described herein are configured with a cut pattern which effectively distributes bending bias to minimize or eliminate preferred bending directions along the length of the device. The beneficial cut patterns are arranged in a non-helical and non-linear fashion to additionally avoid the shape bias inherent in devices relying on helical or linear cut patterns.

For convenience, the present disclosure may occasionally refer to “segments” of the elongated member. As used herein, a “segment” is a repeating structural unit of the elongated member. In a typical two-beam configuration, a single segment can be defined as a first pair of opposing beams disposed between two adjacent rings (one proximal ring and one distal ring) and a second pair of opposing beams extending from the distal ring and being rotationally offset by about 90 degrees from the first pair of opposing beams. In some embodiments, rotational offsets are applied at the segment to segment level rather than at every successive beam pair.

A distributed cut pattern provides rotational offsets that optimally spread preferred bending axes using a minimal length of the elongated member and/or using a minimal number of cuts. The distributed cut pattern beneficially maximizes the likelihood that the device includes a bending axis aligned with a bend required to navigate patient vasculature. Embodiments of distributed cut patterns as disclosed herein can achieve these effects by distributing individual bending axes in many different directions using a minimal number of cuts and within a short length of the device.

For example, for a given length of the elongated member, the radial spacing/distribution of possible beam positions is maximized in as short a length as possible (i.e., in as few number of cuts as possible) while keeping successive rotational offsets within a rotational offset limit. The rotational offset limit sets a limit for the allowable rotation of a beam pair given the positions of previous beam pairs. A rotational offset limit can minimize the effects of rigid spacing artifacts in the device. In some embodiments, the rotational offset limit from one segment to the next is about 10 to 30 degrees (i.e., 10 to 30 degrees from the beam pair two pairs prior).

In some embodiments, successive segments are positioned to form an imperfect ramp pattern. An imperfect ramp pattern is formed by intentionally disrupting an otherwise helix-like pattern with a series of purposefully designed imperfections. In an imperfect ramp pattern, beams are arranged such that no set of three successive segments or beam pairs are spaced according to the same rotational offset. In other words, if the cylindrical surface of the elongated member were unrolled into a plane, no set of three segments or beam pairs would form a straight line. The imperfect ramp pattern includes a variable rotational offset that can vary from one segment to the next by 5 to 15 degrees, for example.

In some embodiments, successive beam pairs or segments are positioned to form a sawtooth pattern. A sawtooth pattern includes a rotational offset that periodically reverses direction along the length of the elongated member. Whereas a typical helical pattern simply continues the rotational offset in the same direction through multiple rotations around the circumference of the elongated member, a sawtooth pattern reaches a first apex position before reversing direction and continuing toward a second apex position. Upon reaching the second apex position, the sawtooth pattern then reverses again and continues back toward the first apex. The pattern then repeats in this fashion along the desired length of the elongated member. In a two-beam configuration, the first and second apexes may be separated by about 90 degrees, for example.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 illustrates an exemplary interventional device which may include beneficial micro-fabricated features described herein;

FIG. 2 illustrates a distal section of an exemplary guidewire device which may include beneficial micro-fabricated features described herein;

FIGS. 3A through 3C illustrate various elongated members having linear cut patterns;

FIG. 4 illustrates an elongated member having a conventional helical cut pattern;

FIG. 5 illustrates an example of an elongated member having a non-helical and non-linear cut pattern (distributed cut pattern) for beneficially distributing bending axes and minimizing or reducing preferred bending directions;

FIG. 6A illustrates exemplary beam pair positioning for forming a distributed, non-helical and non-linear cut pattern;

FIG. 6B illustrates exemplary beam pair positioning for forming an imperfect ramp cut pattern;

FIGS. 6C and 6D illustrate exemplary beam pair positioning for forming a sawtooth cut pattern; and

FIGS. 7 and 8 illustrate differences in rotational offsets, showing differences in spacing artifacts resulting from different sizes of rotational offset jumps.

DETAILED DESCRIPTION

Introduction

The present disclosure relates to interventional devices such as guidewires and catheters having micro-fabricated features which provide flexibility while also maintaining effective torquability and pushability for effective navigation through tortuous vasculature. The micro-fabricated features described herein include cut patterns which form fenestrations arranged to increase flexibility of the interventional device while maintaining good torquability and without forming preferred bending directions.

Cut patterns described herein may have different configurations defined by the number of beams resulting from each set of cuts at a given longitudinal position along the elongated member. For example, in a “two-beam” configuration, each cut location along the length of the device includes a pair of opposed cuts resulting in a pair of opposed, axially extending beams. Typically, the two beams within the resulting beam pair are symmetrically spaced about the circumference of the elongated member (i.e., spaced 180 degrees apart). Because of this 180 degree radial symmetry, a beam pair at a zero degree position will be indistinguishable from a beam pair rotationally offset by 180 degrees. Accordingly, throughout this disclosure, the possible rotational positions for beam pairs are described as ranging from 0 to 180 degrees, with the zero and 180 degree positions being equal to one another.

While the majority of the following description will be dedicated to embodiments having a two-beam configuration, it will be understood that the same principles may also be applied to “one-beam” configurations, “three-beam” configurations, and configurations having more than three beams at each cut location. It will also be understood that in such configurations the differing angular symmetries will require some adjustments to the values used in a two-beam configuration. For example, whereas each pair of cuts in a two-beam configuration will exhibit 180 degree radial symmetry, each cut in a one-beam configuration will not exhibit radial symmetry, each trio of cuts in a three-beam configuration will exhibit 120 degree radial symmetry, each set of four cuts in a four-beam configuration will exhibit 90 degree radial symmetry, etcetera. As such, the space of possible distinguishable rotational positions in a three-beam configuration will range from 0 to 120 degrees, in a four-beam configuration will range from 0 to 90 degrees, and so on. In a one-beam configuration, the space of possible rotational positions will range from 0 to 360 degrees.

Continuing with the example of a two-beam configuration, each pair of cuts at a given cut location dictates the rotational position of the resulting beams, and the rotational position of the resulting beams dictates the preferred bending axis at that location. For a given length of the elongated member, the relative rotational positioning of successive beam pairs determines the type and magnitude of preferred bending axes throughout the elongated member.

Typically, each successive beam pair is rotated 90 degrees plus a constant modifying value from the previous beam pair. In a “linear” cut pattern, the modifying value is zero, providing a constant rotational offset of 90 degrees from one beam pair to the next along the axial length of the elongated member, meaning successive beam pairs will alternate between a zero degree position and a 90 degree rotational position. This type of cut pattern leaves the elongated member with preferred bending axes at zero and 90 degrees for the length of the elongated member. If the modifying value is 5 degrees, for example, a “helical” cut pattern with helically distributed bending axes will result.

In contrast to such linear and helical cut patterns, the embodiments described herein provide effective distribution of individual bending axes to minimize preferred bending directions in the device. This beneficially provides the device with effective navigation capabilities for navigating patient vasculature.

Overview of Interventional Devices

FIG. 1 illustrates an interventional device 100 (e.g., a catheter or guidewire device) including a handle or hub 102 and an elongated member 104. The elongated member 104 has a proximal end 106 coupled to the hub 102 and a distal end 108 extending away from the hub 102. The hub 102 may include paddles, handles, grips, or the like allowing a user to grasp the device, rotate, push/pull, and otherwise manipulate the device 100. The elongated member 104 may be formed as a guidewire or as a catheter. Some embodiments such as guidewires may omit the hub 102 and may be used with accessories such as a torque device.

The elongated member 104 includes a plurality of fenestrations cut into its outer surface. The fenestrations may be formed by cutting one or more pieces of stock material to form a cut pattern which leaves the fenestrations. The fenestrations can provide a variety of benefits, including increasing the flexibility/bendability of the elongated member 104. In some embodiments, the fenestrations are arranged to provide enhanced flexibility (relative to a similar section of stock material lacking fenestrations) while maintaining sufficient outer circumferential structure for transmitting torque and thereby maintaining good torquability of the elongated member 104.

The elongated member 104 may be any length necessary for navigating a patient's anatomy to reach a targeted anatomical area. A typical length may be within a range of about 50 to 300 cm, for example. In a catheter embodiment, the outer diameter of the elongated member 104 may be within a range of about 0.010 inches to about 0.150 inches, though larger or smaller diameters may also be utilized according to preferences and/or application needs. In a guidewire embodiment, the outer diameter of the elongated member 104 may be about 0.014 inches, or may be within a range of about 0.008 to 0.145 inches, though larger or smaller sizes may also be utilized according to user preferences and/or application needs.

The elongated member 104, in a catheter embodiment, is typically formed from a material having an elastic modulus of about 3000 MPa to about 4500 MPa, or about 3500 MPa to about 4000 MPa. In one exemplary embodiment, the elongated member 104 is formed from or includes polyether ether ketone (PEEK). Other polymers with higher moduli may also be utilized where cost and/or fabrication considerations warrant it. In some embodiments, the elongated member 104 includes or is formed from a nickel-titanium alloy having superelastic properties at body temperature. In some embodiments, a proximal portion of the elongated member 104 is formed from a stainless steel or other material with similar stress-strain and elastic modulus properties. Typically, if the elongated member 104 is formed from two or more different materials, the higher modulus material(s) are used at more proximal sections and the lower modulus material(s) are used at more distal sections.

FIG. 2 illustrates the distal end of an embodiment of an interventional device configured as a guidewire 200. The embodiment illustrated in FIG. 2 may represent the distal end 108 of a guidewire embodiment of the elongated member 104 of FIG. 1. The illustrated guidewire 200 includes a core 212 and a tube structure 214 coupled to the core 212. As shown, a distal section 221 of the core 212 extends into the tube 214 and is surrounded by the tube 214. In some embodiments, the distal section 221 of the core 212 is ground so as to progressively taper to a smaller diameter (e.g., about 0.002 inches) at the distal end. The distal section 221 of the core 212 may have a round cross-section, rectangular cross-section, or other suitable cross-sectional shape. In this example, the core 212 and the tube 214 have substantially similar outer diameters at the attachment point 213 where they adjoin and attach to one another.

The tube 214 is coupled to the core 212 (e.g., using adhesive, soldering, and/or welding) in a manner that allows torsional forces to be transmitted from the core 212 to the tube 214 and thereby to be further transmitted distally by the tube 214. A medical grade adhesive 220 may be used to couple the tube 214 to the core 212 at the distal end of the device and to form an atraumatic covering.

The guidewire 200 may also include a coil 224 disposed within the tube 214 so as to be positioned between an outer surface of the distal section of the core 212 and an inner surface of the tube 214. The coil 224 may be formed from a radiopaque material, such as platinum. The illustrated coil 224 is formed as one integral piece. In alternative embodiments, the coil 224 includes a plurality of separate sections stacked, positioned adjacent to one another, and/or interlocked through intertwining.

The tube 214 includes micro-fabricated fenestrations configured to provide effective flexibility and torquability of the interventional device without forming preferred bending directions. Some embodiments may additionally or alternatively include cuts formed in the core 212 itself, such as along the distal section 221 of the core.

Cut Patterns

FIGS. 3A through 3C illustrate embodiments of linear cut patterns, with FIG. 3A showing a typical “two-beam” linear cut pattern, FIG. 3B showing a typical “one-beam” linear cut pattern, and FIG. 3C showing a typical “three-beam” linear cut pattern.

As shown in FIG. 3A, the elongated member 600 includes a plurality of axially extending beams 632 and circumferentially extending rings 634. The elongated member 600 has a two-beam cut pattern because two circumferentially opposing beams 632 are disposed between each pair of adjacent rings 634. The illustrated cut pattern is a linear cut pattern because no rotational offset is applied from one segment to the next.

As described above, a “segment” is a repeating structural unit of the elongated member. In some embodiments, a single segment can be defined as a first pair of opposing beams 632 disposed between two adjacent rings 634 (one proximal ring and one distal ring) and a second pair of opposing beams 632 extending from the distal ring and being rotationally offset by about 90 degrees from the first pair of opposing beams 632. The linear arrangement of segments results in the formation of preferred bending directions aligned to the fenestrations of the elongated member 600.

FIG. 3B illustrates an elongated member 900 having a plurality of beams 932 and rings 934. The elongated member 900 is an example of a one-beam cut pattern because a single beam 932 is disposed between each pair of adjacent rings 934. In such a one-beam cut pattern, a single segment may be defined as a first beam 934 disposed between two adjacent rings 934 (one proximal ring and one distal ring) and a second beam 932 extending from the distal ring and being rotationally offset by about 180 degrees from the first beam 932. As with the elongated member 600, the elongated member 900 has a linear cut pattern because no rotational offset is applied from one segment to the next.

FIG. 3C illustrates an elongated member 1000 having a plurality of beams 1032 and rings 1034. The elongated member 1000 is an example of a three-beam cut pattern because three beams 1032 are disposed between each pair of adjacent rings 1034. In such a three-beam cut pattern, a single segment may be defined as a first triplicate of beams 1032 disposed between two adjacent rings 1034 (one proximal ring and one distal ring) and a second triplicate of beams 1032 extending from the distal ring and being rotationally offset by about 60 degrees from the first triplicate. As with the elongated members 600 and 900, the elongated member 1000 has a linear cut pattern because no rotational offset is applied from one segment to the next.

From the foregoing examples it will be understood that a variety of cut patterns may be utilized. For example, cut patterns providing more than three beams between each pair of adjacent rings may be utilized according to particular application needs. Generally, the higher the number of beams left between each pair of adjacent rings, the relatively greater the stiffness of the elongated member.

FIG. 4 illustrates an embodiment of a typical helical cut pattern intended to minimize preferred bending directions in a micro-fabricated guidewire or catheter device. As shown, cuts made to the elongated member 300 leave pairs of opposing beams situated on opposing sides of the longitudinal axis of the hollow member. Each pair of such cuts forms two beams 332 (extending substantially axially) connecting adjacent rings 334 (extending substantially transversely and circumferentially).

A rotational offset is applied at each successive segment of the elongate member 300 to form the helical pattern. As used herein, a “rotational offset” is the angular rotation between two adjacent segments. A rotational offset is therefore applied from one segment to the next, even though individual cuts within a segment may also be offset from one another.

In a typical embodiment, a single segment can be defined as a first pair of opposing beams 332 disposed between two adjacent rings 334 (one proximal and one distal) and a second pair of opposing beams 332 extending from the distal ring and being rotationally offset by about 90 degrees from the first pair of opposing beams 332. The cuts are arranged to form a substantially consistent rotational offset from one segment to the next. For example, the illustrated embodiment shows a rotational offset of about 5 degrees from one segment to the next. When multiple successive segments having such an angular offset are formed, the resulting pattern of beams along a sufficient length of the elongated member 300 wraps around the axis of the elongated member 300 in a continuously rotating helical pattern.

This type of helical arrangement may also be used in embodiments having different cut patterns. For example, an elongate member having a “one-beam” or “bypass” cut pattern where each cut leaves a single beam between each set of adjacent rings may have a constant rotational offset between each successive cut or set of cuts.

A helical arrangement may also be applied to an embodiment having more than a two-beam cut pattern. For example, the same helix-forming rotational offset may be applied to a three-beam embodiment (such as shown in FIG. 3C) or to an embodiment having more than three beams between adjacent rings.

Helical cut patterns such as that shown in FIG. 4 can beneficially minimize some of the preferred directional bending tendencies of an elongate member. However, the helical structure itself defines a preferred bending curve. An elongated member having a helical cut pattern is more likely to coil or twist into a curve that coincides with the direction of helical rotation as opposed to curving in the opposite direction.

Distributed Patterns

FIG. 5 illustrates a section of an elongated member 500 with a distributed cut pattern. The cuts are beneficially arranged to efficiently distribute the rotational spacing of each beam pair. In this manner, the non-helical and non-linear cut pattern effectively eliminates or minimizes preferred bending directions along the length of the elongated member 500. The cut pattern shown in FIG. 5 is “non-helical” because, in contrast to a helical cut pattern, the resulting beams of the elongated member 500 are not arranged in a helical pattern around axis of the elongated member 500.

The cut pattern shown in FIG. 5 is also “non-linear” because there is a rotational offset applied at successive segments of the device, and because the rotational offsets applied to the segments making up the elongated member 500 are not necessarily equal or constant from one segment to the next.

A helix is commonly defined as following a curve on a conical or cylindrical surface that would become a straight line if the surface were unrolled into a plane. Using the helical cut pattern shown in FIG. 4 as an example, any curved lines tracing the arrangement of the beams/segments along the length of the elongated member 300 would form straight lines if the elongated member 300 were cut open and “unrolled” into a plane. In contrast, using the cut pattern illustrated in FIG. 5, any lines tracing the arrangement of the beams/segments along the length of the elongated member 500 would not form straight lines. For example, given a set of any three successive beam pairs or segments along the length of the elongated member 500 of FIG. 5, the rotational positions of the three successive beam pairs or segments would not form a straight line if the elongated member 500 were unrolled into a plane.

A helix is also typically understood to require at least one full circumferential rotation about the conical/cylindrical surface it lies upon. As such, a cut pattern may also be considered non-helical where the resulting rotational arrangement of beam pairs or segments does not form a pattern that fully wraps around the circumference of the elongated member at least once before changing direction. For example, if the cylindrical surface of the elongated member were unrolled into a plane, and that plane included a series of three or more segments positionally aligned in a straight line, the series of segments would still not constitute a helix if the straight line does not wrap around the circumference of the elongated member at least once.

Rotational offsets may be applied from one beam pair to the next. Alternatively, rotational offsets may be applied to the elongated member at the segment to segment level. As described above, each segment of the elongated member may be defined as a first pair of opposing beams between a proximal and distal ring, and a second pair of beams extending from the distal ring which are offset by approximately 90 degrees from the first pair of beams. Alternative embodiments may apply the distributed rotational offset pattern between segments of different sizes and/or between segments with different internal offsets. For example, some embodiments may include segments having more than two pairs of beams (and more than two corresponding rings) and/or with internal offsets different than 90 degrees. Further, even though the illustrated example shows a two-beam cut pattern where each pair of the opposing cuts results in two circumferentially opposing beams, it will be understood that the distributed offset patterns may also be applied to one-beam cut patterns (see FIG. 3B), three-beam cut patterns (see FIG. 3C), and patterns having more than three beams between adjacent rings.

FIG. 6A graphically compares one example of a distributed arrangement with a conventional helical arrangement. As shown, the helical cut pattern applies a constant rotational offset from segment to segment along the length of the elongated member. The distributed cut pattern applies a rotational offset that effectively distributes bending axes without relying on a helical pattern.

Given a starting beam pair arbitrarily assigned to a zero degree position, successive beam pairs are rotationally offset to maximize the radial distribution of beam positions across the available 180 degree radial space as quickly as possible (i.e., in as few cuts as possible). However, in the illustrated embodiment, a rotational offset limit is also applied to prevent the formation of rigid spacing artifacts (discussed further below with respect to FIGS. 7 and 8).

The rotational offset limit defines a limit on the acceptable rotational “jump” from one beam pair to the next or from one segment to the next. A rotational offset limit with a value of about 10 to 30 degrees from one segment to the next, or a rotational offset limit that rotates successive beam pairs by 90 degrees ± that value, has been shown to provide effective distribution of bending axes without causing overly rigid spacing artifacts. For example, the rotational offset limit may restrict rotation from one beam pair to the next to a value within a range of about 60 to 120 degrees, or about 70 to 110 degrees, or about 80 to 100 degrees. Other embodiments may utilize other rotational offset limits, or may even omit the rotational offset limit, depending on particular product and/or application needs. For example, the rotational offset limit may be raised to a value higher than 30 degrees if the resulting spacing artifacts are acceptable for a particular application.

The exemplary distributed cut pattern illustrated in FIG. 6A utilizes a rotational offset limit of 30 degrees. As shown, a first beam pair is positioned at an arbitrary 0 degree position, and the second beam pair is positioned at 90 degrees. The greatest remaining gaps in the available 180 degree space are between 0 and 90 degrees and between 90 and 180 degrees (where 0 and 180 degrees represent the same position). Placing the next beam pair near a midpoint of one of these gaps, such as at 45 degrees, would best distribute the bending axes of the device. However, placing the next beam pair at 45 degrees would violate the rotational offset limit of 30 degrees. The next beam pair is therefore placed to be close to the midpoint of a remaining gap without violating the rotational offset limit. In this example, the third beam pair is placed at 30 degrees. The fourth beam pair is placed at 120 degrees, which is 90 degrees from the third beam pair. In this particular example, every other beam pair is offset 90 degrees from the previous. Alternative embodiments need not necessarily follow this particular pattern.

Continuing with the example distribution of FIG. 6A, the largest remaining positional gaps are now between 30 and 90 degrees and between 120 and 180 degrees. The fifth and sixth beam pairs are placed at 60 and 120 degrees, respectively. The remaining positional gaps are now located every 30 degrees (i.e., between 0 and 30 degrees, between 30 and 60 degrees, between 60 and 90 degrees, etc.). As the pattern continues, remaining angular positions are filled in a manner that radially spaces beam pairs as fast as possible without violating the rotational offset limit.

In the illustrated example, the available angular positions are provided at a granularity of 10 degrees. In other words, all angular positions may be considered as filled when each 10 degree increment has been filled. The illustrated pattern may therefore includes beam pairs positioned at approximately every 10 degree position before resetting. Such an arrangement is referred to herein as having a “positional granularity” of 10 degrees. Alternative embodiments may utilize a different positional granularity, such as a granularity of 0.1, 0.5, 1, 3, 5, 10, 15, 18, 20, 25, or 30 degrees, for example.

The exact positioning illustrated may be adjusted, and it will be understood that the pattern shown in FIG. 6A is illustrative only. For example, the positional gaps may be filled using a different particular sequence as long as rotational jumps are within the predetermined rotational offset limit. Preferably, when filling in gaps between rotational positions, the next beam pair is positioned to be close to the approximate center of the largest remaining positional gap without violating the rotational offset limit. For example, where a gap exists between the zero degree position and the 30 degree position, the segment may be positioned at the 10 to 20 degree position.

Further, alternative embodiments may utilize a positional granularity that fills in positions of more or less than 10 degrees. Where fewer segments are used before resetting the pattern, the size range of each suitable position will be larger, and where more segments are used before resetting the pattern, the size ranges will become smaller. Some embodiments may include about 6 to 36 beam pairs, or about 10 to 18 beam pairs, before the availability of filled angular positions within the 180 degree radial space is reset. Other embodiments may include many more beam pairs before available positions are reset. As the predetermined positional granularity is lowered, the number of beam pairs needed to fill all available angular positions will rise. Thus, a device having a positional granularity of 1 degree will use 180 beam pairs to fill 180 available angular positions. Moreover, because there are multiple ways of filling available angular positions according to the predetermined parameters (e.g., positional granularity and rotational offset limit) of the selected distributed pattern, the distributed cut pattern need not identically repeat itself after resetting. Therefore, as used herein, the terms “reset,” “resetting,” and the like refer to resetting the availability of angular positions within the 180 degree radial space after it has been filled by beam pairs, and the terms do not necessarily imply that the subsequent refilling of angular positions along the next section of the elongated member will exactly repeat the previous pattern. Indeed, in at least some embodiments, the entire length of the distributed pattern may be non-repeating.

It will be understood that the foregoing principles may also be applied to an embodiment having a one-beam arrangement, an embodiment having a three-beam arrangement, or an embodiment having more than a three-beam arrangement. For example, the one-beam embodiment shown in FIG. 5 may be modified to follow a non-helical and non-linear cut pattern rather than the helical cut pattern shown. The same principles described above may be applied to a one-beam embodiment, except that the range of angular positions to fill extends to 360 degrees. Likewise, the same principles may be generally applied to a three-beam embodiment, except that the range of angular positions to fill extends to 120 degrees.

Imperfect Ramp Patterns

FIG. 6B graphically illustrates another embodiment of a non-helical cut pattern formed by intentionally disrupting an otherwise helical pattern with a series of purposefully designed imperfections. This type of cut pattern is referred to herein as an “imperfect ramp” pattern. The intentional divergences of an imperfect ramp pattern beneficially function to reduce or prevent preferred torsional and curvature relics inherent in a true helical arrangement. As shown, segments are arranged such that no three successive beam pairs or segments are spaced according to the same rotational offset. In other words, no three beam pairs or segments are arranged so as to form a straight line if the cylindrical elongated member were unrolled into a plane.

In contrast to the imperfect ramp patterns of FIG. 6B, a true helical pattern is typically formed by rotationally offsetting each successive segment or each successive beam pair by a constant value. For example, a true helical pattern in a two-beam structure may be formed by rotationally offsetting each successive cut pair by a constant value of 5 degrees, 85 degrees, 95 degrees, or some other constant value that is not a multiple of 90 degrees.

In an imperfect ramp cut pattern, the modifying value is intentionally made variable rather than constant. For example, as in FIG. 6B, an imperfect ramp pattern may be formed by rotationally offsetting each successive beam pair by a constant value ± a variable modifying value. A rotational offset that includes a constant value ± a variable modifying value is referred to herein as an “imperfect rotational offset.”

The variable modifying value may range from 5 to 15 degrees. In other embodiments, the variable modifying value may range from 2.5 to 30 degrees, or some other range suitable for the intended purpose of the resulting device. The variable modifying value is preferably randomly selected at each segment or beam pair to which it is applied, with upper and lower bounds of the random selection being defined by the modifying value range (e.g., 5 to 15 degrees). The constant value portion of the offset is typically 180 degrees in a one beam pattern, 90 degrees in a two-beam pattern, 60 degrees in a three-beam pattern, etcetera.

Alternative embodiments may apply the imperfect ramp pattern between segments of different sizes and/or between segments with different internal offsets. For example, some embodiments may include segments having more than two pairs of beams (and more than two corresponding rings) and/or with internal offsets different than 90 degrees. Further, even though the illustrated example shows a two-beam cut pattern where each pair of the opposing cuts results in two circumferentially opposing beams, it will be understood that the distributed offset patterns may also be applied to one-beam cut patterns (see FIG. 3B), three-beam cut patterns (see FIG. 3C), and patterns having more than three beams between adjacent rings.

Sawtooth Patterns

FIG. 6C illustrates another embodiment of a non-helical cut pattern referred to herein as a “sawtooth” pattern. As with other non-helical cut patterns described herein, the sawtooth cut pattern can beneficially avoid preferred bending axes while also limiting preferred curvature directions inherent in helical patterns. In contrast to a helical pattern, a sawtooth cut pattern periodically reverses the direction of the rotational offset.

Both the sawtooth pattern and the helical pattern of FIG. 6C have an angular offset of about 10 degrees between adjacent segments, with each cut pair within each segment offset by 90 degrees. Whereas the helical pattern simply continues with these offset values in the same direction through multiple rotations around the circumference of the elongated member, the sawtooth pattern reaches a first apex position before reversing direction and continuing toward a second apex position. Upon reaching the second apex position, the sawtooth pattern then reverses again and continues back toward the first apex. The pattern then repeats along the desired length of the elongated member.

For example, the first apex position is set at about 90 degrees (i.e., 90 degrees for the first cut pair of the segment and 180 degrees for the second cut pair of the segment). Upon reaching the first apex position, the pattern reverses toward the second apex position. In this embodiment, the second apex position is set at about 0 degrees (i.e., 0 degrees for the first cut pair of the segment and 90 degrees for the second cut pair of the segment). Alternative embodiments may include other apex positions. Given an arbitrary zero degree starting position, the first apex position is less than 360 degrees in a one-beam configuration, less than 180 degrees in a two-beam configuration, less than 120 degrees in a three-beam configuration, and so on. Preferably, the first apex position is about 180 degrees for a one-beam configuration, 90 degrees for a two-beam configuration, 60 degrees for a three-beam configuration, and so on.

As described above, the angular offset from segment to segment in the sawtooth pattern of FIG. 6C is about 10 degrees. In other embodiments of sawtooth cut patterns, the angular offset may be more or less than 10 degrees, such as from about 5 degrees to about 30 degrees. Additionally, or alternatively, portions of the cut pattern between the apexes may include a variable offset. For example, one or more portions between the apexes may include an imperfect rotational offset such as described above. FIG. 6D illustrates one such embodiment. The sawtooth cut pattern shown in FIG. 6D follows a sawtooth pattern similar to the pattern shown in FIG. 6C, but also includes some sections of variable/imperfect rotational offset between the apexes.

Alternative embodiments may apply the sawtooth pattern between segments of different sizes and/or between segments with different internal offsets. For example, some embodiments may include segments having more than two pairs of beams (and more than two corresponding rings) and/or with internal offsets different than 90 degrees. Further, even though the illustrated example shows a two-beam cut pattern where each pair of the opposing cuts results in two circumferentially opposing beams, it will be understood that the distributed offset patterns may also be applied to one-beam cut patterns (see FIG. 3B), three-beam cut patterns (see FIG. 3C), and patterns having more than three beams between adjacent rings.

Spacing Artifacts

FIG. 7 illustrates an example of an undesirable spacing artifact that may result where a rotational offset limit is not applied. FIG. 7 illustrates a section of an elongated member 700 having a first segment 750a and a second segment 750b. The first segment 750a includes a first pair of beams 730a (only one of which is visible in this view) and second pair of beams 730b and 730c which are offset from the first pair by 90 degrees. The second segment 750b includes a first pair of beams 730d and 730e, and a second pair of beams 730f and 730g which are offset from the first pair by 90 degrees. Each beam within a pair is circumferentially spaced from its corresponding beam by 180 degrees. The second segment 750b is offset from the first segment 750a by 45 degrees, which positions the first pair of beams 730d and 730e off by 45 degrees from the first pair of beams 730a and positions the second pair of beams 730f and 730g off by 45 degrees from the second pair of beams 730b and 730c.

Applying such a 45 degree offset from the first segment 750a to the second segment 750b is desirable because it places the bending axes of the second segment 750b in between the bending axes of the first segment 750a. However, the 45 degree jump also results in beam spacing between segments which can leave an overly rigid artifact in a portion of the elongated member 700. In the illustrated member 700, the beam 730d is only spaced from the beam 730b by 45 degrees, whereas the beam 730e is spaced from the beam 730b by 135 degrees. Likewise, the beam 730e is only spaced from the beam 730c by 45 degrees, whereas the beam 730d is spaced from the beam 730c by 135 degrees. This disproportionate spacing may be undesirable because the region of the elongated member 700 having the smaller spacing may be overly rigid and/or the region having the larger spacing may be overly flexible.

In contrast, a more limited jump in the rotational offset applied from one segment to the next will minimize the discrepancy in beam spacing between segments. For example, FIG. 8 illustrates a section of an elongated member 800 with a more limited rotational offset of about 20 degrees applied between a first segment 850a and a second segment 850b. As in the elongated member 700 of FIG. 7, the first segment 850a includes a first pair of beams 830a and a second pair of beams 830b and 830c, and the second segment 850b includes a first pair of beams 830d and 830e and a second pair of beams 830f and 830g. However, because the second segment 850b is offset from the first segment 850a by a more limited 20 degrees, the spacing discrepancy between beams 830b, 830c, 830d, and 830e is less pronounced. Beam 830d is spaced 70 degrees from beam 830b, and beam 830e is spaced 110 degrees from beam 830b. Likewise, beam 830e is spaced 70 degrees from beam 830c and beam 830d is spaced 110 degrees from beam 830c. Thus, although a spacing discrepancy still exists between segments, it may be controlled to a suitable degree by providing an appropriate rotational offset limit.

The terms “approximately,” “about,” and “substantially” as used herein represent an amount or condition close to the stated amount or condition that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” and “substantially” may refer to an amount or condition that deviates by less than 10%, or by less than 5%, or by less than 1%, or by less than 0.1%, or by less than 0.01% from a stated amount or condition.

The present invention may be embodied in other forms, without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

1. An interventional device, comprising:

an elongated member having a wall and an interior lumen, the elongated member including a plurality of fenestrations extending through the wall and exposing the lumen, the plurality of fenestrations defining a plurality of axially extending beams and a plurality of circumferentially extending rings,
wherein the beams are arranged along a length of the elongated member to form a non-helical and non-linear pattern,
wherein at least a portion of the non-helical and non-linear pattern includes an imperfect ramp pattern such that no set of three successive segments or beam pairs within the imperfect ramp pattern are spaced according to the same rotational offset, and
wherein the imperfect ramp pattern includes an imperfect rotational offset from one beam pair to the next, the imperfect rotational offset being equal to a constant value plus or minus a variable modifying value.

2. The device of claim 1, wherein the interventional device is a micro-catheter device.

3. The device of claim 1, wherein the interventional device is a guidewire, wherein the guidewire includes a core, and wherein the elongated member is formed as a tube structure coupled to the core such that a distal section of the core passes into at least a portion of the tube structure.

4. The device of claim 3, further comprising one or more coils disposed within the tube structure so as to be positioned between an outer surface of the distal section of the core and an inner surface of the tube structure.

5. The device of claim 1, wherein the non-helical and non-linear pattern includes a distributed pattern, the distributed pattern including a first beam pair of the elongated member defined as being positioned at a zero degree position, wherein successive beam pairs are rotationally offset from the first beam pair to maximize the radial distribution of beam positions without surpassing a rotational offset limit, the rotational offset limit limiting the allowable rotation from one segment to the next.

6. The device of claim 5, wherein the rotational offset limit restricts the rotational offset from one beam pair to the next to a value of about 60 to 120 degrees.

7. The device of claim 5, wherein successive beam pairs are positioned near the midpoint of a largest remaining positional gap without surpassing the rotational offset limit.

8. The device of claim 7, wherein the successive segments are positioned as close to the midpoint of a largest remaining positional gap as the rotational offset limit allows.

9. The device of claim 5, wherein the distributed pattern has a positional granularity of about 0.1 to 30 degrees.

10. The device of claim 5, wherein the rotational offset limit is greater than 30 degrees.

11. The device of claim 1, wherein the variable modifying value ranges from 5 to 15 degrees.

12. The device of claim 1, wherein the imperfect ramp pattern has a two-beam configuration, and wherein the constant value portion of the imperfect rotational offset is about 90 degrees.

13. The device of claim 1, wherein at least a portion of the non-helical and non-linear pattern includes a sawtooth pattern that includes a rotational offset that periodically reverses direction such that no section wraps around the entire circumference of the elongated member before reversing direction.

14. The device of claim 13, wherein the sawtooth pattern includes a first apex and a second apex, and wherein rotational offsets of the sawtooth pattern reverse direction upon reaching the first or second apex, and wherein the first and second apexes are separated by about 90 degrees.

15. An interventional device, comprising:

an elongated member having a wall and an interior lumen, the elongated member including a plurality of fenestrations extending through the wall and exposing the lumen, the plurality of fenestrations defining a plurality of axially extending beams and a plurality of circumferentially extending rings,
wherein the beams are arranged along a length of the elongated member to form a non-helical and non-linear pattern, and
wherein at least a portion of the non-helical and non-linear pattern includes a sawtooth pattern that includes a rotational offset that periodically reverses direction such that no section wraps around the entire circumference of the elongated member before reversing direction.

16. The device of claim 15, wherein the sawtooth pattern includes a first apex and a second apex, and wherein rotational offsets of the sawtooth pattern reverse direction upon reaching the first or second apex, and wherein the first and second apexes are separated by about 90 degrees.

17. The device of claim 16, wherein the first and second apexes are separated by about 90 degrees.

18. The device of claim 15, wherein the interventional device is a micro-catheter device or a guidewire device.

19. The device of claim 18, wherein the interventional device is a guidewire that includes a core, and wherein the elongated member is formed as a tube structure coupled to the core such that a distal section of the core passes into at least a portion of the tube structure.

20. The device of claim 19, further comprising one or more coils disposed within the tube structure so as to be positioned between an outer surface of the distal section of the core and an inner surface of the tube structure.

21. The device of claim 19, wherein the core is formed from stainless steel or nitinol.

22. The device of claim 19, wherein the tube structure is formed from nitinol.

23. The device of claim 19, wherein the fenestrations are arranged in a one-beam, two-beam cut, three-beam, or more than three-beam pattern.

24. The device of claim 19, wherein the elongated member is formed from a succession of segments, each segment including a first pair of circumferentially opposed beams and a second pair of circumferentially opposed beams which are rotationally offset by about 90 degrees from the first pair of beams.

Referenced Cited
U.S. Patent Documents
2022065 November 1935 Wappler
2187299 January 1940 Burkhardt
3183702 May 1965 Zittel
3572334 March 1971 Petterson
3612058 October 1971 Ackerman
3709271 January 1973 Flory
3920058 November 1975 Walker
4163406 August 7, 1979 Crawford
4239069 December 16, 1980 Zimmerman
4416312 November 22, 1983 Ostberg
4688540 August 25, 1987 Ono
4719924 January 19, 1988 Crittenden
4801297 January 31, 1989 Mueller
4846186 July 11, 1989 Box
4895168 January 23, 1990 Machek
4989608 February 5, 1991 Ratner
5047045 September 10, 1991 Arney et al.
5069217 December 3, 1991 Fleischhacker
5084022 January 28, 1992 Claude
5095915 March 17, 1992 Angelson
5102390 April 7, 1992 Crittenden et al.
5147317 September 15, 1992 Shank
5154725 October 13, 1992 Leopold
5174302 December 29, 1992 Palmer
5315996 May 31, 1994 Lundquist
5326374 July 5, 1994 Ilbawi et al.
5345945 September 13, 1994 Hodgson et al.
5372587 December 13, 1994 Hammerslag
5382259 January 17, 1995 Phelps et al.
5385152 January 31, 1995 Abele
5437288 August 1, 1995 Schwartz
5441483 August 15, 1995 Avitall
5506682 April 9, 1996 Pryor
5507751 April 16, 1996 Goode et al.
5551444 September 3, 1996 Finlayson
5554114 September 10, 1996 Wallace et al.
5569218 October 29, 1996 Berg
5573520 November 12, 1996 Schwartz
5573867 November 12, 1996 Zafred et al.
5659205 August 19, 1997 Weisser
5673707 October 7, 1997 Chandrasekaran
5676659 October 14, 1997 McGurk
5685568 November 11, 1997 Pirrello
5685868 November 11, 1997 Lundquist
5690120 November 25, 1997 Jacobsen
5706826 January 13, 1998 Schwager
5741429 April 21, 1998 Donadio
5746701 May 5, 1998 Noone
5792154 August 11, 1998 Doan
5800454 September 1, 1998 Jacobsen
5833631 November 10, 1998 Nguyen
5833632 November 10, 1998 Jacobsen
5842461 December 1, 1998 Azuma
5860963 January 19, 1999 Azam
5876356 March 2, 1999 Viera et al.
5911715 June 15, 1999 Berg
5911717 June 15, 1999 Jacobsen
5916194 June 29, 1999 Jacobsen
5931830 August 3, 1999 Jacobsen
5954672 September 21, 1999 Schwager
6004279 December 21, 1999 Crowley
6014919 January 18, 2000 Jacobsen
6017319 January 25, 2000 Jacobsen
6022343 February 8, 2000 Johnson et al.
6022369 February 8, 2000 Jacobsen
6027863 February 22, 2000 Donadis
6033288 March 7, 2000 Weisshaus
6033394 March 7, 2000 Vidlund
6056702 May 2, 2000 Lorenzo
6063101 May 16, 2000 Jacobsen
6110164 August 29, 2000 Vidlund
6132389 October 17, 2000 Cornish
6139511 October 31, 2000 Huter
6168570 January 2, 2001 Ferrera
6179828 January 30, 2001 Mottola
6183410 February 6, 2001 Jacobsen
6183420 February 6, 2001 Douk et al.
6214042 April 10, 2001 Jacobsen
6228073 May 8, 2001 Noone
6245030 June 12, 2001 Dubois
6251086 June 26, 2001 Cornelius
6260458 July 17, 2001 Jacobsen
6261246 July 17, 2001 Pantages et al.
6273881 August 14, 2001 Kiemeneij
6302870 October 16, 2001 Jacobsen
6306105 October 23, 2001 Rooney
6346091 February 12, 2002 Jacobsen
6356791 March 12, 2002 Westlund
6402706 June 11, 2002 Richardson et al.
6428489 August 6, 2002 Jacobsen
6431039 August 13, 2002 Jacobsen
6436056 August 20, 2002 Wang et al.
6440088 August 27, 2002 Jacobsen
6458867 October 1, 2002 Wang et al.
6464651 October 15, 2002 Hiejima et al.
6492615 December 10, 2002 Flanagan
6494894 December 17, 2002 Mirarchi
6527732 March 4, 2003 Strauss
6527746 March 4, 2003 Oslund
6553880 April 29, 2003 Jacobsen
6554820 April 29, 2003 Wendlandt
6558355 May 6, 2003 Metzger
6579246 June 17, 2003 Jacobsen
6602207 August 5, 2003 Mam
6606985 August 19, 2003 Negishi
6610046 August 26, 2003 Usami et al.
6627724 September 30, 2003 Meijs et al.
6652508 November 25, 2003 Griffin
6671560 December 30, 2003 Westlund
6766720 July 27, 2004 Jacobsen
6805676 October 19, 2004 Klint
RE39018 March 21, 2006 Azuma
7024885 April 11, 2006 Villalobos
7097624 August 29, 2006 Campion
7110910 September 19, 2006 Deffenbaugh
7128718 October 31, 2006 Hojeibane et al.
7182735 February 27, 2007 Shireman
7276062 October 2, 2007 McDaniel et al.
7338345 March 4, 2008 Fujinami
7421929 September 9, 2008 French
7494474 February 24, 2009 Richardson et al.
7507246 March 24, 2009 McGuckin et al.
7621880 November 24, 2009 Ryan
7637875 December 29, 2009 Itou
7641622 January 5, 2010 Satou
7670302 March 2, 2010 Griffin
7699792 April 20, 2010 Hofmann
7722545 May 25, 2010 Bertsch
7722552 May 25, 2010 Aimi
7744545 June 29, 2010 Aimi
7747314 June 29, 2010 Parins
7753859 July 13, 2010 Kinoshita
7766896 August 3, 2010 Volk
7769839 August 3, 2010 Boivie et al.
7785273 August 31, 2010 Eskuri
7789839 September 7, 2010 Lupton
7806837 October 5, 2010 Rasmussen
7878984 February 1, 2011 Davis
7883474 February 8, 2011 Mirigian
7914467 March 29, 2011 Layman et al.
7942832 May 17, 2011 Kanuka
7989042 August 2, 2011 Obara et al.
8043314 October 25, 2011 Noriega et al.
8048004 November 1, 2011 Davis et al.
8105246 January 31, 2012 Voeller
8128579 March 6, 2012 Chen
8128580 March 6, 2012 Fujimagari
8137293 March 20, 2012 Zhou
8167821 May 1, 2012 Sharrow et al.
8257279 September 4, 2012 Jacobsen
8292828 October 23, 2012 Uihlein
8357140 January 22, 2013 Majercak
8376961 February 19, 2013 Layman
8377056 February 19, 2013 Oyola et al.
8409114 April 2, 2013 Parins
8444577 May 21, 2013 Bunch
8454535 June 4, 2013 Majercak
8460213 June 11, 2013 Northrop
8468919 June 25, 2013 Christian
8500658 August 6, 2013 Boyle
8517959 August 27, 2013 Kurosawa
8535243 September 17, 2013 Shireman
8540648 September 24, 2013 Uihlein
8551020 October 8, 2013 Chen et al.
8551021 October 8, 2013 Voeller
8622931 January 7, 2014 Teague
8622933 January 7, 2014 Maki
8728075 May 20, 2014 Wu et al.
8758269 June 24, 2014 Miyata et al.
8795202 August 5, 2014 Northrop
8795254 August 5, 2014 Layman
8821477 September 2, 2014 Northrop
8870790 October 28, 2014 Jacobsen
8900163 December 2, 2014 Jacobsen
8915865 December 23, 2014 Jacobsen et al.
8932235 January 13, 2015 Jacobsen
8936558 January 20, 2015 Jacobsen
8939916 January 27, 2015 Jacobsen
8956310 February 17, 2015 Miyata
9067332 June 30, 2015 Lippert
9067333 June 30, 2015 Lippert
9072873 July 7, 2015 Lippert
9072874 July 7, 2015 Northrop
9364589 June 14, 2016 Cage
9550013 January 24, 2017 Kawasaki
9616195 April 11, 2017 Lippert
9623212 April 18, 2017 Tano
9662798 May 30, 2017 Christian
9700702 July 11, 2017 Tano
9848882 December 26, 2017 Lippert
9950137 April 24, 2018 Lippert
10252024 April 9, 2019 Northrop
10363389 July 30, 2019 Lippert
10639456 May 5, 2020 Peralta
20010009980 July 26, 2001 Richardson et al.
20020013540 January 31, 2002 Jacobsen et al.
20020019599 February 14, 2002 Rooney
20020049392 April 25, 2002 DeMello
20020062524 May 30, 2002 Vogland et al.
20020078808 June 27, 2002 Jacobsen et al.
20020082524 June 27, 2002 Anderson
20030009208 January 9, 2003 Snyder et al.
20030023190 January 30, 2003 Cox
20030069522 April 10, 2003 Jacobsen
20030093059 May 15, 2003 Griffin et al.
20030125641 July 3, 2003 Jafari et al.
20040039371 February 26, 2004 Tockman et al.
20040054349 March 18, 2004 Brightbill
20040087933 May 6, 2004 Lee
20040093060 May 13, 2004 Seguin et al.
20040102719 May 27, 2004 Keith et al.
20040111044 June 10, 2004 Davis et al.
20040122340 June 24, 2004 Vrba et al.
20040167440 August 26, 2004 Sharrow et al.
20040181174 September 16, 2004 Davis
20040186485 September 23, 2004 Kear
20040193140 September 30, 2004 Griffin
20040225292 November 11, 2004 Sasso et al.
20040254450 December 16, 2004 Griffin et al.
20050054953 March 10, 2005 Ryan
20050124976 June 9, 2005 Devens, Jr. et al.
20050216049 September 29, 2005 Jones et al.
20050274384 December 15, 2005 Tran et al.
20060041186 February 23, 2006 Vancaillie
20060074442 April 6, 2006 Noriega
20060089618 April 27, 2006 McFerran
20060112802 June 1, 2006 Fujinami
20060121218 June 8, 2006 Obara et al.
20060189896 August 24, 2006 Davis et al.
20060241519 October 26, 2006 Hojeibane et al.
20060262474 November 23, 2006 Chen et al.
20070010786 January 11, 2007 Casey et al.
20070100285 May 3, 2007 Griffin
20070112331 May 17, 2007 Weber et al.
20070135763 June 14, 2007 Musbach
20070142893 June 21, 2007 Buiser et al.
20070167876 July 19, 2007 Euteneuer et al.
20070185415 August 9, 2007 Ressemann et al.
20070221230 September 27, 2007 Thompson
20070233039 October 4, 2007 Mitelberg
20070250036 October 25, 2007 Volk
20070287955 December 13, 2007 Layman et al.
20080021347 January 24, 2008 Jacobsen et al.
20080021401 January 24, 2008 Jacobsen et al.
20080021404 January 24, 2008 Jacobsen
20080064989 March 13, 2008 Chen et al.
20080077049 March 27, 2008 Hirshman
20080086854 April 17, 2008 Boyd
20080097246 April 24, 2008 Stafford
20080097247 April 24, 2008 Eskuri
20080097248 April 24, 2008 Munoz
20080119869 May 22, 2008 Teague et al.
20080122226 May 29, 2008 Madison
20080125674 May 29, 2008 Bilecen et al.
20080147170 June 19, 2008 Vrba
20080188298 August 7, 2008 Seelig et al.
20080188928 August 7, 2008 Salahieh
20080200839 August 21, 2008 Bunch et al.
20080262474 October 23, 2008 Northrop
20080269641 October 30, 2008 O'Shaughnessy et al.
20080319525 December 25, 2008 Tieu
20090036832 February 5, 2009 Skujins et al.
20090036833 February 5, 2009 Parins
20090043283 February 12, 2009 Turnlund et al.
20090043372 February 12, 2009 Northrop et al.
20090118675 May 7, 2009 Czyscon et al.
20090177119 July 9, 2009 Heidner
20090177185 July 9, 2009 Northrop
20090254000 October 8, 2009 Layman et al.
20090292225 November 26, 2009 Chen et al.
20090318892 December 24, 2009 Aboytes et al.
20100063479 March 11, 2010 Merddan
20100114017 May 6, 2010 Lenker et al.
20100114302 May 6, 2010 Tzafriri et al.
20100139465 June 10, 2010 Christian et al.
20100228150 September 9, 2010 Zimmerman
20100256527 October 7, 2010 Lippert et al.
20100256528 October 7, 2010 Lippert
20100256601 October 7, 2010 Lippert et al.
20100256602 October 7, 2010 Lippert et al.
20100256603 October 7, 2010 Lippert
20100256604 October 7, 2010 Lippert
20100256605 October 7, 2010 Lippert et al.
20100256606 October 7, 2010 Lippert et al.
20100318066 December 16, 2010 Miyata et al.
20110011226 January 20, 2011 Tsurusawa
20110022003 January 27, 2011 Tekulve
20110160680 June 30, 2011 Cage et al.
20110245808 October 6, 2011 Voeller et al.
20110251519 October 13, 2011 Romoscanu
20120065623 March 15, 2012 Nelson, III
20120158034 June 21, 2012 Wilson
20120209073 August 16, 2012 McWeeney et al.
20120239074 September 20, 2012 Aboytes et al.
20120271397 October 25, 2012 Muzslay et al.
20120289938 November 15, 2012 Northrop et al.
20130018359 January 17, 2013 Coyle
20130096553 April 18, 2013 Hill et al.
20130110000 May 2, 2013 Tully
20130226033 August 29, 2013 Eskuri
20130255456 October 3, 2013 Christian
20140094787 April 3, 2014 Reynolds
20140187983 July 3, 2014 Anderson
20140257363 September 11, 2014 Lippert
20140276109 September 18, 2014 Gregorich
20140276787 September 18, 2014 Wang et al.
20140309657 October 16, 2014 Ben-Ami
20140336620 November 13, 2014 Layman et al.
20150011834 January 8, 2015 Ayala et al.
20150011964 January 8, 2015 Abner
20150190614 July 9, 2015 Uihlein
20150216533 August 6, 2015 Gray et al.
20150238734 August 27, 2015 Kanazawa
20150290432 October 15, 2015 Mathews
20150297863 October 22, 2015 Hannon et al.
20150305710 October 29, 2015 Koninklijke
20150306355 October 29, 2015 Idstrom
20160008585 January 14, 2016 Tano
20160045101 February 18, 2016 Nakatate et al.
20160089128 March 31, 2016 Weber et al.
20160113793 April 28, 2016 Nishigishi
20160135827 May 19, 2016 Elsesser
20160199620 July 14, 2016 Pokorney
20160235337 August 18, 2016 Govari
20160361520 December 15, 2016 Braun
20160367788 December 22, 2016 Jimenez et al.
20160375226 December 29, 2016 Nabeshima
20170047740 February 16, 2017 Narla
20170189643 July 6, 2017 Christian
20170203076 July 20, 2017 Groneberg et al.
20170281909 October 5, 2017 Northrop et al.
20180015261 January 18, 2018 Lippert
20180015262 January 18, 2018 Lippert
20180015263 January 18, 2018 Lippert
20180028177 February 1, 2018 Van et al.
20180071496 March 15, 2018 Snyder
20180177517 June 28, 2018 Lippert
20180185619 July 5, 2018 Batman et al.
20180193607 July 12, 2018 Lippert
20190290883 September 26, 2019 Lippert et al.
20200094027 March 26, 2020 Davis
20200222672 July 16, 2020 Davis et al.
20200345975 November 5, 2020 Snyder
20210162184 June 3, 2021 Lippert et al.
20210178128 June 17, 2021 Lippert et al.
20210213241 July 15, 2021 Christian et al.
20210228845 July 29, 2021 Lippert et al.
20210283380 September 16, 2021 Lippert et al.
20210346656 November 11, 2021 Lippert et al.
20220118225 April 21, 2022 Snyder et al.
Foreign Patent Documents
723040 December 1997 AU
733966 May 2001 AU
774559 July 2004 AU
2008229892 October 2008 AU
9709363 January 2000 BR
9712829 January 2000 BR
2266685 May 2006 CA
2255781 March 2007 CA
23951491 December 2008 CA
123094 October 1999 CN
1324285 November 2001 CN
1422673 June 2003 CN
1518428 August 2004 CN
1781684 June 2006 CN
1897892 January 2007 CN
101001660 July 2007 CN
101209365 July 2008 CN
101304778 November 2008 CN
201239164 May 2009 CN
101815553 August 2010 CN
102049085 May 2011 CN
102107041 June 2011 CN
102824681 December 2012 CN
102847225 January 2013 CN
103764012 April 2014 CN
103860265 June 2014 CN
104271035 January 2015 CN
104602616 May 2015 CN
105209102 December 2015 CN
105545375 May 2016 CN
105682729 June 2016 CN
105828690 August 2016 CN
105979880 September 2016 CN
60036882 July 2008 DE
69738235 July 2008 DE
0521595 January 1993 EP
0998323 May 2000 EP
934141 November 2005 EP
921754 October 2007 EP
1239901 October 2007 EP
1940498 July 2008 EP
2964305 January 2016 EP
2293660 March 2008 ES
59102509 June 1984 JP
06-154335 June 1994 JP
07-008560 January 1995 JP
08-308934 November 1996 JP
11294497 October 1999 JP
2000116787 April 2000 JP
2000511094 August 2000 JP
2000343313 December 2000 JP
2001500808 January 2001 JP
2002543896 December 2002 JP
2003011117 January 2003 JP
2004-025340 January 2004 JP
2004136121 May 2004 JP
2004329552 November 2004 JP
2004535233 November 2004 JP
2005-514115 May 2005 JP
2005-534407 November 2005 JP
2005533594 November 2005 JP
2007313638 December 2007 JP
2008536639 November 2008 JP
2010-029736 February 2010 JP
2010-503484 February 2010 JP
2010-535583 November 2010 JP
2010535588 November 2010 JP
2011-206175 October 2011 JP
4805208 November 2011 JP
4845313 December 2011 JP
2013-523282 June 2013 JP
2015-181723 October 2015 JP
2015-186427 October 2015 JP
2017-169253 September 2017 JP
20000015896 March 2000 KR
20000036139 June 2000 KR
412468 November 2000 TW
9419039 January 1994 WO
1994006503 March 1994 WO
98/58697 December 1998 WO
99/04847 February 1999 WO
9953824 October 1999 WO
2004011076 February 2004 WO
2006/025931 March 2006 WO
2006/058234 June 2006 WO
2006113863 October 2006 WO
2007050718 May 2007 WO
2008/034010 March 2008 WO
2009/020691 February 2009 WO
2009/020836 February 2009 WO
2009020961 February 2009 WO
2009020962 February 2009 WO
2010077692 July 2010 WO
2010115163 October 2010 WO
2011/123689 October 2011 WO
2014/005095 January 2014 WO
2014066104 May 2014 WO
2014138580 September 2014 WO
2016047499 March 2016 WO
2016117238 July 2016 WO
2016136609 September 2016 WO
2016152194 September 2016 WO
2016158671 October 2016 WO
2018/017349 January 2018 WO
2018218216 November 2018 WO
2020/217171 October 2020 WO
Other references
  • U.S. Appl. No. 16/212,425, filed Dec. 6, 2018, Christian.
  • U.S. Appl. No. 16/281,046, filed Feb. 20, 2019, Snyder.
  • U.S. Appl. No. 16/439,894, filed Jun. 13, 2019, Lippert.
  • Canadian Office Action for CA2757655 dated Jan. 2, 2018.
  • EP10759515.9 Supplementary European Search Report dated Sep. 25, 2012.
  • European Search Report for EP09836735 dated Nov. 7, 2012.
  • Supplementary Partial European Search Report for EP14760849 dated Oct. 11, 2016.
  • European Search Report for EP15197042.3 dated Apr. 11, 2016.
  • European Search Report for application No. 17184064.8 dated Jan. 5, 2018.
  • International Search Report and Written Opinion for PCT/US2009/067217 dated Dec. 16, 2010.
  • International Search Report and Written Opinion for PCT/US2010/029867 dated Jun. 1, 2010.
  • International Search Report and Written Opinion for PCT/US2014/021742 dated Aug. 27, 2014.
  • International Search Report and Written Opinion for PCT/US2017/041299 dated Oct. 2, 2017.
  • International Search Report and Written Opinion for PCT/US2017/041301 dated Oct. 2, 2017.
  • International Search Report and Written Opinion for PCT/US2017/041305 dated Oct. 2, 2017.
  • International Search Report and Written Opinion for application PCT/US2017/050802 dated Nov. 7, 2017.
  • International Search Report and Written Opinion for PCT/US2017/068056 dated Feb. 26, 2018.
  • International Search Report and Written Opinion for PCT/US2018/034756 dated Aug. 14, 2018.
  • International Search Report and Written Opinion for PCT/US2019/019046 dated May 17, 2019.
  • International Search Report and Written Opinion for PCT/US2019/021031 dated Jun. 18, 2019.
  • International Search Report and Written Opinion for PCT/US2018/034723 dated Sep. 5, 2018.
  • U.S. Appl. No. 12/633,727, Oct. 16, 2012, Office Action.
  • U.S. Appl. No. 12/633,727, Feb. 28, 2013, Notice of Allowance.
  • U.S. Appl. No. 12/753,831, Feb. 1, 2012, Office Action.
  • U.S. Appl. No. 12/753,831, May 31, 2012, Final Office Action.
  • U.S. Appl. No. 12/753,831, Mar. 21, 2014, Office Action.
  • U.S. Appl. No. 15/753,831, Aug. 29, 2014, Final Office Action.
  • U.S. Appl. No. 12/753,831, Apr. 14, 2015, Notice of Allowance.
  • U.S. Appl. No. 12/753,836, Dec. 9, 2011, Office Action.
  • U.S. Appl. No. 12/753,836, May 1, 2012, Final Office Action.
  • U.S. Appl. No. 12/753,836, Jul. 31, 2014, Office Action.
  • U.S. Appl. No. 12/753,836, Jan. 9, 2015, Final Office Action.
  • U.S. Appl. No. 12/753,836, Jun. 26, 2015, Office Action.
  • U.S. Appl. No. 12/753,836, Feb. 17, 2016, Final Office Action.
  • U.S. Appl. No. 12/753,836, Dec. 23, 2016, Office Action.
  • U.S. Appl. No. 12/753,836, Jul. 14, 2017, Final Office Action.
  • U.S. Appl. No. 12/753,836, Nov. 24, 2017, Notice of Allowance.
  • U.S. Appl. No. 12/753,839, Feb. 7, 2012, Office Action.
  • U.S. Appl. No. 12/753,839, May 31, 2012, Final Office Action.
  • U.S. Appl. No. 12/753,839, May 5, 2014, Office Action.
  • U.S. Appl. No. 12/753,842, Aug. 1, 2012, Office Action.
  • U.S. Appl. No. 12/753,842, Jan. 9, 2013, Final Office Action.
  • U.S. Appl. No. 12/753,842, Jan. 29, 2014, Office Action.
  • U.S. Appl. No. 12/753,842, Sep. 4, 2014, Final Office Action.
  • U.S. Appl. No. 12/753,842, Dec. 29, 2014, Notice of Allowance.
  • U.S. Appl. No. 12/753,842, Mar. 5, 2015, Notice of Allowance.
  • U.S. Appl. No. 12/753,849, May 10, 2011, Office Action.
  • U.S. Appl. No. 12/753,849, Oct. 18, 2011, Office Action.
  • U.S. Appl. No. 12/753,849, Jun. 6, 2012, Final Office Action.
  • U.S. Appl. No. 12/753,849, Jan. 3, 2013, Office Action.
  • U.S. Appl. No. 12/753,849, Oct. 9, 2013, Final Office Action.
  • U.S. Appl. No. 12/753,849, May 27, 2014, Office Action.
  • U.S. Appl. No. 12/753,849, Nov. 5, 2014, Interview Summary.
  • U.S. Appl. No. 12/753,849, Feb. 2, 2015, Notice of Allowance.
  • U.S. Appl. No. 12/753,819, Apr. 30, 2015, Notice of Allowance.
  • U.S. Appl. No. 12/753,855, Sep. 15, 2011, Office Action.
  • U.S. Appl. No. 12/753,855, Apr. 18, 2012, Final Office Action.
  • U.S. Appl. No. 12/753,855, Feb. 28, 2014, Office Action.
  • U.S. Appl. No. 12/753,855, Jan. 13, 2015, Final Office Action.
  • U.S. Appl. No. 12/753,855, May 21, 2015, Office Action.
  • U.S. Appl. No. 12/753,855, May 5, 2016, Office Action.
  • U.S. Appl. No. 12/753,855, Nov. 30, 2016, Notice of Allowance.
  • U.S. Appl. No. 12/753,858, May 10, 2011, Office Action.
  • U.S. Appl. No. 12/753,858, Oct. 19, 2011, Final Office Action.
  • U.S. Appl. No. 12/753,858, Feb. 3, 2012, Office Action.
  • U.S. Appl. No. 12/753,858, Jul. 18, 2012, Final Office Action.
  • U.S. Appl. No. 12/753,858, Mar. 29, 2013, Office Action.
  • U.S. Appl. No. 12/753,858, Jan. 17, 2014, Final Office Action.
  • U.S. Appl. No. 12/753,858, Sep. 4, 2014, Office Action.
  • U.S. Appl. No. 12/753,858, Nov. 4, 2014, Interview Summary.
  • U.S. Appl. No. 12/753,858, May 28, 2015, Final Office Action.
  • U.S. Appl. No. 12/753,858, Dec. 30, 2015, Office Action.
  • U.S. Appl. No. 12/753,858, Oct. 14, 2016, Office Action.
  • U.S. Appl. No. 12/753,858, Mar. 27, 2017, Office Action.
  • U.S. Appl. No. 12/753,858, Oct. 20, 2017, Final Office Action.
  • U.S. Appl. No. 12/753,858, Mar. 13, 2018, Office Action.
  • U.S. Appl. No. 12/753,858, Nov. 14, 2018, Final Office Action.
  • U.S. Appl. No. 12/753, 858, Mar. 14, 2019, Notice of Allowance.
  • U.S. Appl. No. 13/901,375, Dec. 10, 2015, Office Action.
  • U.S. Appl. No. 13/901,375, Aug. 1, 2016, Office Action.
  • U.S. Appl. No. 13/901,375, Dec. 27, 2016, Notice of Allowance.
  • U.S. Appl. No. 14/199,675, Nov. 3, 2016, Office Action.
  • U.S. Appl. No. 14/199,675, May 18, 2017, Final Office Action.
  • U.S. Appl. No. 14/199,675, Sep. 6, 2017, Notice of Allowance.
  • U.S. Appl. No. 15/465,399, Apr. 23, 2018, Office Action.
  • U.S. Appl. No. 15/465,399, Sep. 10, 2018, Notice of Allowance.
  • U.S. Appl. No. 15/611,328, Mar. 27, 2019, Office Action.
  • U.S. Appl. No. 15/611,344, Mar. 26, 2019, Office Action.
  • U.S. Appl. No. 15/606,607, May 14, 2019, Office Action.
  • U.S. Appl. No. 15/611,328, Sep. 24, 2019, Final Office Action.
  • U.S. Appl. No. 15/848,878, Oct. 29, 2019, Office Action.
  • U.S. Appl. No. 15/611,344, Nov. 12, 2019, Final Office Action.
  • U.S. Appl. No. 15/606,607, Nov. 19, 2019, Final Office Action.
  • U.S. Appl. No. 15/698,553, Nov. 27, 2019, Office Action.
  • U.S. Appl. No. 15/848,878, Feb. 5, 2020, Office Action.
  • Non-Final Office Action received for U.S. Appl. No. 16/281,046, dated Oct. 29, 2020, 18 pages.
  • International Search Report and Written Opinion for Application PCT/US2017/050602 dated Nov. 7, 2017.
  • International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/030589, dated Jul. 17, 2020, 7 pages.
  • International Search Report and Written Opinion, PCT App. No. PCT/US2020/013754, dated Jun. 9, 2020, 11 pages.
  • Non-Final Office Action received for U.S. Appl. No. 15/606,607, dated Jun. 10, 2020, 26 pages.
  • Non-Final Office Action received for U.S. Appl. No. 16/855,366, dated Jun. 23, 2021, 15 pages.
  • International Search Report and Written Opinion issued in PCT/US2018/034756 dated Aug. 14, 2018.
  • U.S. Appl. No. 16/212,425, Mar. 16, 2020, Office Action.
  • Final Office Action received for U.S. Appl. No. 16/281,046, dated May 11, 2021, 18 pages.
  • International Search Report and Written Opinion received for PCT Patent Application No. PCT/US21/14656, dated Apr. 28, 2021, 8 pages.
  • Non-Final Office Action received for U.S. Appl. No. 15/848,878, dated Jun. 3, 2021, 13 pages.
  • Final Office Action received for U.S. Appl. No. 16/212,425, dated Aug. 3, 2020, 14 pages.
  • Final Office Action received for U.S. Appl. No. 15/848,878, dated Aug. 27, 2020, 13 pages.
  • Non-Final Office Action received for U.S. Appl. No. 15/611,328, dated Jun. 29, 2020, 13 pages.
  • Non-Final Office Action received for U.S. Appl. No. 15/917,255, dated Aug. 17, 2020, 12 pages.
  • Final Office Action received for U.S. Appl. No. 15/848,878, dated Sep. 22, 2021, 12 pages.
  • International Search Report and Written Opinion received for PCT Patent Application No. PCT/US21/042753, dated Nov. 5, 2021, 14 pages.
  • Final Rejection received for U.S. Appl. No. 15/606,607, dated Dec. 15, 2020, 24 pages.
  • U.S. Appl. No. 15/698,553, May 15, 2020, Notice of Allowance.
  • U.S. Appl. No. 15/611,344, May 21, 2020, Office Action.
Patent History
Patent number: 11369351
Type: Grant
Filed: May 25, 2018
Date of Patent: Jun 28, 2022
Patent Publication Number: 20200121308
Assignee: SCIENTIA VASCULAR, INC. (West Valley City, UT)
Inventors: Clark C. Davis (Holladay, UT), John A. Lippert (Park City, UT)
Primary Examiner: Vi X Nguyen
Application Number: 16/616,139
Classifications
Current U.S. Class: Guidewire Within Flexible Body Entering Conduit (604/164.13)
International Classification: A61F 2/95 (20130101); A61B 17/00 (20060101); A61M 25/00 (20060101); A61M 25/09 (20060101);