Abstract: The present invention provides improved processes for purifying liraglutide. Liraglutide is purified via two sequential RP-HPLC purifications followed by a salt-exchange step, where a pH is kept constant in the first and second purification steps. In particular, the processes utilize a halogenated solvent in a sample preparation step, which provides better solubility and an environment suitable for decarboxylation for crude liraglutide prior to a RP-HPLC purification.
Abstract: In certain aspects, the invention provides crystalline forms of ivacaftor N-(2,4-di-tert-butyl-phenyl-5-hydroxy-phenyl)-1,4-dihydro-4-oxoquinoline-3-carboxamide. In related aspects, the invention provides a process for preparing any one of crystalline forms S2, S3, S4 and S5 of ivacaftor. The process includes: forming a solution including crude ivacaftor and a solvent; adding an anti-solvent to the solution to form slurry including a precipitate; isolating the precipitate; and drying the precipitate to provide crystalline form S2, S3, S4, or S5 of ivacaftor.
Type:
Grant
Filed:
March 12, 2021
Date of Patent:
July 12, 2022
Assignee:
ScinoPharm Taiwan, Ltd.
Inventors:
Kuan-Hsun Huang, Li-Ting Wang, Inze Lin, Tsung-Cheng Hu
Abstract: The present invention provides improved processes for the preparation of elagolix and intermediates thereof. The intermediate of formula VII is achieved by a coupling reaction of a compound of formula V and a N-benzylidene protected compound of formula IV: The present invention is suitable for a large-scale production, avoiding the use of potential genotoxic substances and can be performed under mild conditions.
Abstract: Crystalline form S1 of irinotecan free base characterized by a powder X-ray diffraction pattern with peaks at about 8.7±0.2, 13.1±0.2, 14.5±0.2, 17.4±0.2, 18.4±0.2, 20.9±0.2, 24.0±0.2 and 27.5±0.2 degrees two-theta degrees two-theta, and crystalline form S2 of irinotecan free base characterized by a powder X-ray diffraction pattern with peaks at about 7.1±0.2, 10.6±0.2, 12.4±0.2, 20.6±0.2, 21.6±0.2 and 24.2±0.2 degrees two-theta.
Abstract: In certain aspects, the invention provides a novel crystalline form of olaparib (4-[(3-[(4-cyclopropylcarbonyl)piperazin-4-yl]carbonyl)-4-fluorophenyl]methyl(2H)phthalazin-1-one). In related aspects, the invention provides a processe for preparing the novel crystalline form of olaparib. The process includes forming a solution comprising crude olaparib and an organic solvent; adding the solution to an anti-solvent to form a slurry comprising a precipitate; isolating the precipitate; and drying the precipitate to obtain a crystalline form III of olaparib.
Abstract: Crystalline form S1 of lifitegrast characterized by a powder X-ray diffraction pattern with peaks at about 10.7±0.2, 16.2±0.2, 19.9±0.2, 22.1±0.2, 24.7±0.2, and 25.9±0.2 degrees two-theta, crystalline form S2 of lifitegrast characterized by a powder X-ray diffraction pattern with peaks at about 16.4±0.2, 24.9±0.2, and 26.2±0.2 degrees two-theta, and processes of making thereof are provided.
Abstract: The present disclosure provides efficient, economical, and improved processes for synthesizing lifitegrast and intermediates thereof. The currently discloses processes provide a direct synthetic route, avoiding protection or deprotection steps. The currently disclosed process also provides processes for synthesizing lifitegrast using a reduced number of synthetic steps.
Abstract: A process for preparing sugammadex sodium comprising: reacting a ?-cyclodextrin of formula I with a halogenating agent in the presence of N-methyl-2-pyrrolidone to provide a compound of formula II; and reacting the compound of formula II with 3-mercapto propionic acid in the presence of a sodium base and an organic solvent to provide sugammadex sodium formula III: wherein X in formula II is halo.
Abstract: In certain aspects, the invention provides crystalline forms of olaparib (4-[(3-[(4-cyclopropylcarbonyl)piperazin-4-yl]carbonyl)-4-fluorophenyl]methyl(2H)phthalazin-1-one). In related aspects, the invention provides processes for preparing the crystalline forms of olaparib. The processes include: forming a solution comprising crude olaparib and an organic solvent; adding an anti-solvent to the solution to form a slurry comprising a precipitate; isolating the precipitate; and drying the precipitate to obtain a crystalline form I of olaparib or a crystalline form II of olaparib.
Abstract: A process for making ixazomib citrate of formula VI comprising reacting a compound of formula V with citric acid to form ixazomib citrate of formula VI: wherein R is hydrogen or an amide protecting group.
Abstract: Provided herein are novel processes and methods for making 4-[(3-[(4-cyclopropylcarbonyl)piperazin-1-yl]carbonyl)-4-fluorophenyl]methyl(2H)phthalazin-1-one (Olaparib) and intermediates thereof. Olaparib is a poly ADP ribose polymerase (PARP) inhibitor useful in the treatment of cancers. Benefits of the present disclosure include the use of less toxic compounds and improved yields.
Abstract: The present invention provides improved processes of preparing Fondaparinux sodium comprising converting a compound of formula ABCDE4 to Fondaparinux sodium at a reaction pH of no more than about 9.0. In some embodiments, the intermediates for the synthesis of Fondaparinux sodium, are also provided.
Abstract: The present invention provides efficient, economical, and improved methods for synthesizing ibrutinib and intermediates thereof. The invention involves a unique biphasic acylation reaction system which advantageously allows for easy separation of ibrutinib from the reaction mixture without additional extraction and wash steps. The isolated ibrutinib formed using the methods described herein can be useful in the preparation of an amorphous form of ibrutinib. In some embodiments, the isolated ibrutinib produced by the processes described herein is a homogenous solution of ibrutinib and DMSO which may be directly used in the formation of the amorphous polymorph. In some embodiments, the isolated ibrutinib is solid ibrutinib. The solid ibrutinib may also be used in the formation of amorphous ibrutinib.
Abstract: The present invention provides novel processes for the preparation of regadenoson having the formula (I). In some embodiments, the intermediates for the synthesis of regadenoson are also provided.
Abstract: The present invention provides novel crystalline forms of apremilast hemitoluene solvate, apremilast hydrate, and apremilast anhydrate and an amorphous form of apremilast, and processes for the preparation of these forms.
Abstract: This invention provides a novel method for the preparation of 2,3-disubstituted -4-oxy-cyclopentan1-one compounds that are useful for the synthesis of prostaglandins and prostaglandin analogs of industrial relevance. The method comprises the metal-catalyzed asymmetric 1,4-conjugate addition of vinylboron compounds to 2-substituted -4-oxy-cyclopent-2-en-1-ones. This method relies on the use of less toxic, easily-handled reagents, and can be performed under milder conditions than offered by some conventional methods, affording 2,3-disubstituted-4-oxy-cyclopentan-1-one compounds enantio- and diastereoselectively, which are precursors to the said prostaglandin and prostaglandin analogs, in high yield.
Type:
Grant
Filed:
July 9, 2015
Date of Patent:
June 6, 2017
Assignee:
SCINOPHARM TAIWAN, LTD.
Inventors:
Julian Paul Henschke, Ping-Yu Wu, Hsyueh-Liang Wu, Wen-Hsien Wen