Patents Assigned to SEABED GEOSOLUTIONS B.V.
  • Patent number: 9958565
    Abstract: Embodiments, including apparatuses, systems and methods, for attaching autonomous seismic nodes to a deployment cable. In an embodiment, an apparatus includes a seismic node having a direct attachment mechanism configured to directly attach the seismic node to a deployment line, the direct attachment mechanism being configurable between an open and/or unlocked position and a closed and/or locked position to release and retain the deployment line.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 1, 2018
    Assignee: Seabed Geosolutions B.V.
    Inventors: Richard Edward Henman, Johan Fredrik Næs, Arne Henning Rokkan, Mariann Ervik, Leif Johan Larsen, Fredrik Lund, Robert Schistad
  • Publication number: 20180105239
    Abstract: A method for cycling autonomous underwater vehicles (AUVs) that record seismic signals during a marine seismic survey. The method includes deploying plural current AUVs on the ocean bottom; recording the seismic signals during the marine seismic survey with plural current AUVs; releasing from an underwater base a new AUV to replace a corresponding current AUV from the plural current AUVs; recovering the current AUV; and continuing to record the seismic signals with the new AUV.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 19, 2018
    Applicant: Seabed Geosolutions B.V.
    Inventors: Antoine Lelaurin, Jonathan Grimsdale, Thierry Brizard
  • Publication number: 20180106921
    Abstract: Embodiments, including apparatuses, systems, and methods, for attaching autonomous seismic nodes directly to a deployment cable. The nodes may be attached to the deployment cable by a removable fastener or insert. The fastener may be a staple that surrounds the cable and rigidly couples to the node to securely fasten the cable to the node. The fastener may be secured into the node itself, a housing or enclosure surrounding the node, or into a receiver or mechanism attached to the node. Other fasteners besides a staple may include bands, wires, pins, straps, ties, clamps, and other similar devices that may be inserted around a portion of the deployment line and be removably coupled to the node. After retrieval of the node, the fastener may be removed and discarded.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 19, 2018
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Johan Fredrik Næs
  • Publication number: 20180100940
    Abstract: Embodiments, including apparatuses, systems and methods, for automatically attaching and detaching seismic devices to a deployment cable, including a plurality of autonomous seismic nodes. A node installation system may include a moveable node carrier coupled to a cable detection device and a node attachment device that is configured to move a direct attachment mechanism on a node into a locking or closed position about the deployment cable. In an embodiment for retrieval and/or detachment operations, the system may also be configured to automatically detect the position of a node and remove the node from the deployment line by actuating the direct attachment mechanism into an open or unlocked position. Other devices besides a node may be attached and detached from the deployment line if they are coupled to one or more direct attachment mechanisms.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 12, 2018
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Næs, Mariann Ervik, Ole-Fredrik Semb
  • Publication number: 20180057114
    Abstract: A high angle overboard system and method for the deployment of subsea equipment from a marine vessel. The overboard guide system deploys a deployment line from a surface vessel into a body of water at an angle alpha. The angle alpha may be at least 15 degrees and may be greater than 20, 25, 30, 45, or even 60 degrees or more during some or all portions of the subsea operations. The overboard system may be located near the splashzone of the surface vessel or a distance beneath a water surface. The overboard system may take any number of configurations, such as a cone shape, and/or may comprise a plurality of rollers or one or more sheaves. The overboard system allows a subsea device to be operated at higher deployment angles as compared to prior art subsea operations, such as with A-frame LARS systems.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 1, 2018
    Applicant: Seabed Geosolutions B.V.
    Inventor: Martin John Hartland
  • Publication number: 20180052246
    Abstract: One or more wavegates are located on a seismic surface vessel to substantially prevent or limit waves from crashing onto a back deck of the vessel. The wavegate may comprise one or more steel gates or doors located at or near the aft portion of the vessel, such as on or near the rear end of the back deck, that may be moveable between a closed position and an open position. Each door may be fixed in position and/or be rotated and/or moveable in a horizontal and/or vertical direction between different positions. The wavegate allows the surface vessel to travel backwards and/or in the face of incoming waves while substantially preventing and/or limiting waves from crashing onto the back deck of the marine vessel. The seismic surface vessel may be a deployment vessel or a hybrid seismic shooting and deployment vessel or another marine surface vessel.
    Type: Application
    Filed: August 21, 2017
    Publication date: February 22, 2018
    Applicant: Seabed Geosolutions B.V.
    Inventor: Martin John Hartland
  • Patent number: 9891333
    Abstract: Apparatuses, systems, and methods for guiding and/or positioning a plurality of seismic nodes on or near the seabed by an autonomous underwater vehicle (AUV) or a remotely operated vehicle (ROV). In one embodiment, an underwater vehicle is configured to monitor the deployment of cable connected to a plurality of seismic nodes, including the touchdown monitoring, positioning, and guiding of deployed autonomous seismic nodes or ocean bottom cable. The underwater vehicle may comprise a propulsion system configured to steer and propel the vehicle in a body of water, a tracking system configured to automatically track the cable and/or attached seismic nodes, and a guidance system configured to communicate with a surface vessel node data in real time or near real time for active guidance and/or positioning of the deployment cable.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: February 13, 2018
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Geir Valsvik, Arne Henning Rokkan, Jean-Baptiste Danre, Bjarne Isfeldt
  • Patent number: 9873496
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: January 23, 2018
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Patent number: 9845137
    Abstract: A method for cycling autonomous underwater vehicles (AUVs) that record seismic signals during a marine seismic survey. The method includes deploying plural current AUVs on the ocean bottom; recording the seismic signals during the marine seismic survey with plural current AUVs; releasing from an underwater base a new AUV to replace a corresponding current AUV from the plural current AUVs; recovering the current AUV; and continuing to record the seismic signals with the new AUV.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: December 19, 2017
    Assignee: Seabed Geosolutions B.V.
    Inventors: Antoine Lelaurin, Jonathan Grimsdale, Thierry Brizard
  • Patent number: 9846250
    Abstract: Embodiments, including apparatuses, systems and methods, for automatically attaching and detaching seismic devices to a deployment cable, including a plurality of autonomous seismic nodes. A node installation system may include a moveable node carrier coupled to a cable detection device and a node attachment device that is configured to move a direct attachment mechanism on a node into a locking or closed position about the deployment cable. In an embodiment for retrieval and/or detachment operations, the system may also be configured to automatically detect the position of a node and remove the node from the deployment line by actuating the direct attachment mechanism into an open or unlocked position. Other devices besides a node may be attached and detached from the deployment line if they are coupled to one or more direct attachment mechanisms.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: December 19, 2017
    Assignee: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Næs, Mariann Ervik, Ole-Fredrik Semb
  • Patent number: 9829596
    Abstract: Embodiments of systems and methods for storing and handling a plurality of autonomous seismic nodes are presented. The node handling and storage system may be coupled to a node deployment system that deploys and/or retrieves nodes from water from the back deck of a marine vessel. One embodiment of the node handling and storage system includes a plurality of portable containers that may be assembled in a variety of configurations based on the vessel and survey requirements. The containers are coupled to an autonomous or semi-autonomous node conveyor and/or transport system that moves the nodes between and within the containers for node cleaning, downloading, charging, servicing, and storage. The conveyor system may include a plurality of different transport devices and/or systems, such as rotatable conveyors, lateral conveyors, lift mechanisms, and elevators.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: November 28, 2017
    Assignee: Seabed Geosolutions B.V.
    Inventors: Richard Edward Henman, Arne Henning Rokkan, Johan Fredrik Naes, Mariann Ervik, Leif Johan Larsen, Arve Jaatun, Ole-Fredrik Semb
  • Patent number: 9821895
    Abstract: An autonomous underwater vehicle (AUV) is configured to record seismic signals during a marine seismic survey. The AUV includes a body having a base (B) and first and second sides (A, C), the body having a head part and a tail part; a propulsion system for guiding the AUV to a final target on the ocean bottom; a seismic sensor configured to record seismic signals; and an anchoring system configured to rock or twist the base in a given sequence so that the base (B) penetrates into the ocean bottom.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: November 21, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventor: Thierry Brizard
  • Patent number: 9791583
    Abstract: Embodiments of systems and methods for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel using an overboard node deployment and retrieval system are presented. The overboard system may comprise one or more overboard wheels that are actively powered to move in response to changes in movement of the deployed cable. The overboard system may comprise a first overboard wheel with a plurality of rollers and a second overboard wheel configured to detect movement and/or changes in a position of the deployment line. The overboard system may be configured to move the first overboard wheel in response to movement of the second overboard wheel. In addition, the first overboard wheel may comprise at least one opening or pocket configured to hold a node while the node passes across the wheel. Other seismic devices may also pass through the overboard system, such as transponders and weights attached to the deployment cable.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: October 17, 2017
    Assignee: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Naes, Mariann Ervik, Ole-Fredrik Semb
  • Patent number: 9784873
    Abstract: Containerized handling, deployment, and retrieval systems for deploying and retrieving a plurality of autonomous seismic nodes from the back deck of a marine vessel are presented. The handling system may comprise a deployment system and a node storage and service system fully contained within a plurality of CSC approved ISO containers. Each of the components of the handling system may be located in a CSC approved ISO container for storage, operation, and transport. In one embodiment, the node deployment system is configured to retrieve and deploy autonomous seismic nodes from the back deck of a vessel. In one embodiment, the node storage and service system is configured to transfer nodes to and from the node deployment system for storage and servicing.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: October 10, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Næs, Mariann Ervik, Ole-Fredrik Semb
  • Patent number: 9778386
    Abstract: Embodiments of an autonomous seismic node that can be positioned on the seabed are disclosed. The autonomous seismic node comprises a pressurized node housing substantially surrounded and/or enclosed by a non-pressurized node housing. The seismic node may be substantially rectangular or square shaped for node storage, handling, and deployment. One or more node locks may be coupled to either (or both) of the pressurized node housing or the non-pressurized node housing. The pressurized node housing may be formed as a cast monolithic titanium structure and may be a complex shape with irregularly shaped sides and be asymmetrical. In other embodiments, a non-pressurized housing may substantially enclose other devices or payloads besides a node, such as weights or transponders, and be coupled to a plurality of protrusions.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 3, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Johan Fredrik Naes, Richard Edward Henman, Arne Henning Rokkan, Leif Johan Larsen, Mariann Ervik
  • Patent number: 9768626
    Abstract: Systems, methods, and apparatuses related to automatically and simultaneously charging a plurality of autonomous seismic nodes on a marine vessel before and/or after deployment to the seabed are disclosed. A plurality of autonomous seismic nodes are simultaneously charged in a CSC approved ISO container. Each autonomous seismic node may comprise a plurality of power connectors, a plurality of rechargeable batteries, and a battery management system. Each of the nodes may be configured to couple with a charging system on the marine vessel, which may include a power source, one or more power/charging stations, one or more power connectors, and a network. The node may have a plurality of power connectors disposed within a plurality of grooves that are configured to couple with a plurality of charging rails for simultaneous charging.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: September 19, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventors: Richard Edward Henman, Arne Henning Rokkan, Johan Fredrik Næs, Mariann Ervik, Leif Johan Larsen, Bjarne Isfeldt
  • Publication number: 20170137098
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of seismic autonomous underwater vehicles (AUVs) on or near the seabed. In one embodiment, the AUV comprises a buoyant body coupled to a pressure vessel that contains substantially all of the AUV's electronic components. The pressure vessel may comprise a plurality of composite components coupled together by a metallic ring to provide a substantially cylindrical shape to the pressure vessel. The AUV body provides lift to the AUV during lateral movement and compensates for an overall negative buoyancy of the AUV. The AUV may include a plurality of thrusters for propulsion. A vertical thruster may be used to create an upwards attack angle during takeoff and to maintain depth and orientation during flight. During normal flight operations, the AUV is configured to travel horizontally and vertically in a body of water by using only the horizontal thrusters.
    Type: Application
    Filed: October 13, 2016
    Publication date: May 18, 2017
    Applicant: Seabed Geosolutions B.V.
    Inventors: Geir Valsvik, Arne Henning Rokkan, Johan Fredrik Næs, Matthew E. Silvia, Christopher J. von Alt
  • Publication number: 20170133875
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Applicant: Seabed Geosolutions B.V.
    Inventor: Bjarne Isfeldt
  • Publication number: 20170082763
    Abstract: Embodiments, including apparatuses, systems and methods, for automatically attaching and detaching seismic devices to a deployment cable, including a plurality of autonomous seismic nodes. A node installation system may include a moveable node carrier coupled to a cable detection device and a node attachment device that is configured to move a direct attachment mechanism on a node into a locking or closed position about the deployment cable. In an embodiment for retrieval and/or detachment operations, the system may also be configured to automatically detect the position of a node and remove the node from the deployment line by actuating the direct attachment mechanism into an open or unlocked position. Other devices besides a node may be attached and detached from the deployment line if they are coupled to one or more direct attachment mechanisms.
    Type: Application
    Filed: December 1, 2016
    Publication date: March 23, 2017
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman, Leif Johan Larsen, Johan Fredrik Næs, Mariann Ervik, Ole-Fredrik Semb
  • Patent number: 9595833
    Abstract: Embodiments of systems and methods for inductively powering seismic sensor nodes are presented. An embodiment of an inductive battery includes a battery cell configured to store charge for use by an external device. The inductive battery may also include a first inductive element coupled to the battery cell, the first inductive element configured to receive current from the battery cell and emit a responsive magnetic field for powering an external device through inductance. In an embodiment the external device is a seismic sensor node.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: March 14, 2017
    Assignee: SEABED GEOSOLUTIONS B.V.
    Inventor: Bjarne Isfeldt