Abstract: In a printer of the present invention, an EEPROM that carries out sequential access and has a relatively small storage capacity is applied for storage elements mounted on both black and color ink cartridges, which are detachably attached to the printer. Pieces of information relating to each ink cartridge, for example, pieces of information on remaining quantities of respective inks in the ink cartridge, are stored in the storage element of the ink cartridge. A format of addressing adopted in the storage elements of the ink cartridges is different from that adopted in an EEPROM incorporated in a printer main body of the printer. A control IC provided in the printer accordingly converts the storage format of addressing, before writing the information into the storage elements of the ink cartridges. In the printer, a RAM is mounted with the control IC on a carriage, and the pieces of information to be written into the storage elements of the ink cartridges are temporarily registered in the RAM.
Abstract: An electro-optical device is disclosed in which dimensional accuracy in a space between an opposite substrate and an electro-optical device substrate is increased, and thus, display quality is enhanced by improving the structure in which a lens array substrate and a sheet covering the lens array substrate are adhered to each other on the side of the opposite substrate. In a liquid crystal apparatus, an opposite substrate includes a lens array substrate provided with a step portion equal in height to microlenses in the region overlapping the region in which a sealing material is formed, and a glass sheet adhered to the lens array substrate by an adhesive.
Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
Type:
Grant
Filed:
August 19, 2002
Date of Patent:
November 29, 2005
Assignee:
Seiko Epson Corporation
Inventors:
Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato
Abstract: A semiconductor substrate has an integrated circuit, an interconnect electrically connected to the inside of the semiconductor substrate, and an electrode formed on the interconnect. A plurality of resin layers are separately formed on the semiconductor substrate so that part of the semiconductor substrate is exposed. A redistribution interconnect is electrically connected to the electrode. An external terminal is formed on the redistribution interconnect and supported by the resin layers.
Abstract: An electrooptic device has a first substrate 10 and a second substrate 20 disposed to oppose each other, and liquid crystal 35 provided between the first substrate 10 and the second substrate 20. This electrooptic device has a sealing material 30 surrounding the liquid crystal 35 and wires 16 continuously extending along one side of the first substrate 10 to another side intersecting said one side. The wires 16 each have a first wire layer which is continuously formed in the inside region of the sealing material 30 and the outside region of the sealing material 30 or which is continuously formed in the region overlapping the sealing material 30 and the outside region of the sealing material 30; and a second wire layer 182 which is formed in the inside region of the sealing material 30 or the region overlapping the sealing material 30. Since being not exposed to outside air, the second wire layer 182 is not corroded.
Abstract: Disclosed is a device management network system that is capable of monitoring all abnormalities that has occurred in a network device. The device management network system includes a management server, client devices, and network devices to be managed. The management server, when receiving a device-details screen request from a certain client device running a Web browser, collects MIB objects from the printing device specified by the information in the device-details screen request. Then, the management server provides the client device with data which causes the Web browser to display the device-details screen containing information about all abnormalities that has occurred in the printing device.
Abstract: A soft alumite is produced by forming an oxide film on the surface of an aluminum substrate. Printing is performed on a porous layer formed on the surface of the soft alumite while heating the soft alumite. Alternatively, printing is performed with a dye-based ink on a porous layer formed on the surface of the soft alumite.
Abstract: To effectively check a plurality of unit circuits, each including an electro-optical element and a control circuit. Each unit circuit U includes an OLED element and a control circuit for controlling operation of the OLED element. A check signal for tentatively driving the OLED element is input to a check terminal TPa1. A switching element is connected to a check unit circuit Ut, located at a corner of an effective region A, of the plurality of unit circuits U. The switching element is changed from an on state where the OLED element in the check unit circuit Ut is electrically isolated from the check terminal TPa1 to an off state where the OLED element in the check unit circuit Ut is electrically connected to the check terminal TPa1.
Abstract: A tip of a wire formed in the shape of a ball is bonded to an electrode by using a tool. A part of the wire is drawn from the tip bonded to the electrode. A bump is formed on the electrode by deforming a portion of the wire continuous with the tip on the tip by using the tool. The wire is cut while leaving the bump on the electrode.
Abstract: To reduce the variation of luminance between driving modules. Driving modules DR1 to DR3 each have monitor current output circuits, and output monitor current signals MI12, MI21, MI22, and MI31. A monitor unit of a control circuit converts the monitor current signals into monitor data D12, D21, D22, and D31, respectively, and supplies them to a control data generating unit. The control data generating unit generates current control data CTL1 to CTL3 such that the values of the respective monitor current signals are equal to each other and supplies them to the driving modules DR1 to DR3.
Abstract: Aspects of the invention can provide a manufacturing method of a sub-mirror that can readily enhance manufacturing yield. The manufacturing method of a sub-mirror used for a light source lamp provided with an arc tube, an ellipsoidal reflector to reflect lights emitted from the arc tube to be emitted toward an illuminated region, and a sub-mirror having a reflection concave surface to reflect the lights emitted from the arc tube to the ellipsoidal reflector and a through-hole used for attachment to the arc tube.
Abstract: Aspects of the invention can relate to a light source that includes a light source lamp and an arc-tube drive unit. The light source lamp can include an arc tube that emits light between a pair of electrodes, a reflector that reflects the light from the arc tube to a region to be illuminated, and an auxiliary mirror that reflects the light emitted from the arc tube to the region to be illuminated toward the reflector. The arc-tube drive unit can drive the arc tube with an alternating current so that, of the pair of electrodes of the arc tube, the brightness of a first luminescent point generated in the vicinity of a first electrode adjacent to the auxiliary mirror is lower than the brightness of a second luminescent point generated in the vicinity of a second electrode remote from the auxiliary mirror.
Abstract: Aspects of the invention can provide an electronic circuit that can include a first transistor having a first and second terminal between which a first channel region can be formed, and a second transistor having a third and fourth terminal between which a second channel region can be formed. In the electronic circuit, a gate voltage of the first transistor can be based on a programming current flowing from the first terminal to the second terminal during a first step, a reproducing current flowing from the second terminal to the first terminal during a second step, and a current level of the reproducing current corresponding to the gate voltage determined during the first step.
Abstract: A circuit of driving an electro-optical device includes: a storage unit and a correction unit. The storage unit stores a correction value corresponding to a pixel position of a display section in which pixels are formed so as to correspond to intersections of a plurality of scanning lines and a plurality of source lines which are arranged in a matrix and which performs the pixel display by allowing an image signal supplied to a source line to be applied to a pixel electrode of each pixel via switching elements, the image signal being supplied to the source line by turning on a switching element disposed in the pixel with the scanning signal supplied to the scanning line. The correction unit receives the image signal for polarity reverse driving and independently adding a correction value from the storage unit to an image signal having a positive polarity and an image signal having a negative polarity to supply the image signals to the display section.
Abstract: To provide a transmission circuit which can adequately perform a fast data transmission even to a receiving circuit of a host controller or a device controller with a low sensitivity. A transmission circuit transmitting a signal through first and second signal lines that form a differential pair and includes a first terminating resistor terminating the first signal line, a second terminating resistor terminating the second signal line and a terminating resistance control circuit generating a control signal for controlling terminating resistance values of the first terminating resistor and the second terminating resistor. A first resistor takes a first resistance value if a first control signal is active, a nth resistor takes a nth resistance value if a nth control signal is active, the first-nth resistors are coupled, one end of the coupled first-nth resistors is coupled to a reference potential and the other end is coupled to the first signal line or the second signal line.
Abstract: Providing a transmission circuit, which can transfer data normally with high speed even toward a host controller and a device, which does not meet design requirements defined in the standard, a data-transfer control device and electronic equipment. A current source coupled between a first source VDD and a node ND10; a first transistor SW1 formed between the node ND10 and a DP terminal; a second transistor SW2 formed between the node ND10 and a DM terminal; a first buffers outputting a first control signal HS_DPout 2 to the gate of the first transistor SW1; and a second buffer outputting a second control signal HS_DMout 2 to the gate of the second transistor SW2; are included. When any of the first control signal HS_DPout2 and the second control signal HS_Dmout 2 is set active, other of the control signals is set nonnative. Each of the buffers includes a first inverter INV1 and a second inverter INV receiving an output from the first inverter INV1.
Abstract: To reduce a circuit area of a data line driving circuit. The data line driving circuit includes a plurality of circuit blocks. A circuit block BLi has shift register unit circuits Ai1 to Ai4, logical operation unit circuits Bi1 to Bi4 and a control unit circuit Ci. The control unit circuit Ci specifies the operation period of the corresponding circuit block on the basis of the input and output signals P0 to P4 of the shift register unit circuits Ai1 to Ai4 and supplies an X clock signal XCK and an inverted X clock signal XCKB to the shift register unit circuits Ai1 to Ai4.
Abstract: An electroluminescent device includes an element substrate having a plurality of light emitting elements formed on one side, an encapsulating member arranged to face the element substrate to cover the light emitting elements, and a conductive layer provided on a surface of the encapsulating member opposite to the element substrate.
Abstract: A device for measuring a physical value, such as a vibratory gyroscope, is provided. The device comprises a vibrator; a driving means for exciting a driving vibration in the vibrator; a detecting means for obtaining an output signal based on a detection vibration excited in the vibrator in response with the physical value; and a detection circuit for processing the output signal to provide a detection signal corresponding with the physical value. The vibrator has at least one bending vibration arms 1A and 1B vibrating in bending mode along a specified plane (X-Y plane). The bending vibration arm comprises at least a pair of base parts 2A, 2B and a connecting part 3 connecting the base parts 2A, 2B. The connecting and base parts define a pair of recesses 8A, 8B.
Abstract: The color filter substrate has a functional region which includes a plurality of colored layers and which functions as a color filter selectively transmitting predetermined color light components and a non-functional region other than the functional region. The method includes discharging, onto a substrate, a liquid material, in which coloring materials constituting the colored layers are dissolved or dispersed into a solvent, with a liquid droplet discharge method. In the discharging of the liquid material, the liquid material is discharged onto the functional region and the liquid material or the solvent is discharged onto the non-functional region. The amount of the solvent discharged onto the non-functional region per unit area is larger than the amount of the solvent discharged onto the functional region per unit area.