Patents Assigned to SemEquip Inc.
  • Patent number: 8097529
    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: January 17, 2012
    Assignee: Semequip, Inc.
    Inventors: Wade A. Krull, Thomas N. Horsky
  • Patent number: 8084007
    Abstract: The invention provides new methods for the synthesis of isotopically enriched metal borohydrides, metal tetrahydroundecaborate salts, and decaborane from isotopically enriched 10B-boric acid or 11B-boric acid. The invention is particularly useful for synthesis of isotopically enriched sodium or lithium borohydride, MB11H14 (where M is Li, Na, K, or alkylammonium), and decaborane.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: December 27, 2011
    Assignee: SemEquip Inc.
    Inventors: Bernard Spielvogel, Kevin S. Cook
  • Publication number: 20110306193
    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 15, 2011
    Applicant: SemEquip, Inc.
    Inventors: Wade A. Krull, Thomas N. Horsky
  • Patent number: 8071958
    Abstract: A method of manufacturing a semiconductor device includes the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant molecules contain n dopant atoms, where n is an integer number greater than 10. This method enables increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy, while reducing the charge per dopant atom by the factor n.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: December 6, 2011
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Publication number: 20110226969
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. For example, in the fabrication of Complementary Metal-Oxide Semiconductor (CMOS) devices, the clusters are implanted to provide P-type doping for Source and Drain structures and for Polygates; these doping steps are critical to the formation of PMOS transistors. The molecular cluster ions have the chemical form BnHx+ and BnHx?, where 10?n?100 and 0?x?n+4.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 22, 2011
    Applicant: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Publication number: 20110217223
    Abstract: The invention provides new methods for synthesis of large boron hydride clusters, e.g., boron hydride molecules of the formula BnHm where 5?n?96 and m?n+8, wherein m and n satisfy the electron counting rules of macropolyhedral boranes. The invention is particularly useful for synthesis of octadecaborane (B18H22). Preferred methods of the invention include iteratively generating a conjugate acid from a salt of the [BaHb]c? or [Bn+2Hm?4]2? anion followed by degradation under conditions conducive to concentrating and drying of the conjugate acid to provide a borane BnHm and residual salt of the [BaHb]c? or [Bn+2Hm?4]2? anion which is reused in the method of synthesis. The invention further provides isotopically enriched boranes, particularly isotopically enriched 10B18H22 and 11B18H22.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Applicant: SEMEQUIP, INC.
    Inventors: Bernard Spielvogel, Kevin Cook
  • Patent number: 8013312
    Abstract: Vapor delivery systems and methods that control the heating and flow of vapors from solid feed material, especially material that comprises cluster molecules for semiconductor manufacture. The systems and methods safely and effectively conduct the vapor to a point of utilization, especially to an ion source for ion implantation. Ion beam implantation is shown employing ions from the cluster materials. The vapor delivery system includes reactive gas cleaning of the ion source, control systems and protocols, wide dynamic range flow-control systems and vaporizer selections that are efficient and safe. Borane, decarborane, carboranes, carbon clusters and other large molecules are vaporized for ion implantation. Such systems are shown cooperating with novel vaporizers, ion sources, and reactive cleaning systems.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 6, 2011
    Assignee: SemEquip, Inc.
    Inventor: Douglas Adams
  • Publication number: 20110195009
    Abstract: The invention provides new methods for synthesis of ClusterBoron (B18H22). Preferred methods of the invention include in situ generation of the conjugate acid of B20H182? and degradation of the acid in solution to produce B18H22 in high yields and high purity. The invention further provides isotopically enriched boranes, particularly isotopically enriched 10B)18H22 and 11B18H22.
    Type: Application
    Filed: November 3, 2008
    Publication date: August 11, 2011
    Applicant: SemEquip, Inc.
    Inventor: Kevin S. Cook
  • Patent number: 7994031
    Abstract: A method of manufacturing a semiconductor device is further described, comprising the steps of providing a supply of dopant atoms or molecules into an ionization chamber, combining the dopant atoms or molecules into clusters containing a plurality of dopant atoms, ionizing the dopant clusters into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ion by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant clusters contain n dopant atoms where n can be 2, 3, 4 or any integer number. This method provides the advantages of increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 9, 2011
    Assignee: Semequip, Inc.
    Inventors: Thomas Neil Horsky, Dale Conrad Jacobson, Wade Allen Krull
  • Patent number: 7960709
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. For example, in the fabrication of Complementary Metal-Oxide Semiconductor (CMOS) devices, the clusters are implanted to provide P-type doping for Source and Drain structures and for Polygates; these doping steps are critical to the formation of PMOS transistors. The molecular cluster ions have the chemical form BnHx+ and BnHx? where 10<n<100 and 0<x<n+4.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: June 14, 2011
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 7955580
    Abstract: The invention provides new methods for synthesis of large boron hydride clusters e.g., boron hydride molecules of the formula BnHm where 5?n?96 and m?n+8, wherein m and n satisfy the electron counting rules of macropolyhedral boranes. The invention is particularly useful for synthesis of octadecaborane (B18H22). Preferred methods of the invention include iteratively generating a conjugate acid from a salt of the [BaHb]c? or [Bn+2Hm?4]2? anion followed by degradation under conditions conducive to concentrating and drying of the conjugate acid to provide a borane BnHm and residual salt of the [BaHb]c? or [Bn+2Hm?4]2? anion which is reused in the method of synthesis. The invention further provides isotopically enriched boranes, particularly isotopically enriched 10B18H22 and 11B18H22.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: June 7, 2011
    Assignee: SemEquip, Inc.
    Inventors: Bernard Spielvogel, Kevin Cook
  • Publication number: 20110089321
    Abstract: A multipurpose ion implanter beam line configuration comprising a mass analyzer magnet followed by a magnetic scanner and magnetic collimator combination that introduce bends to the beam path, the beam line constructed for enabling implantation of common monatomic dopant ion species cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept an ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection
    Type: Application
    Filed: November 17, 2010
    Publication date: April 21, 2011
    Applicant: Semequip, Inc.
    Inventors: Hilton F. Glavish, Thomas N. Horsky, Dale C. Jacobson, Sami K. Hahto, Masao Naito, Nobuo Nagai, Nariaki Hamamoto
  • Patent number: 7928406
    Abstract: A new type of triode extraction system, a Cluster Ion Beam Extraction System, is disclosed for broad energy range cluster ion beam extraction applications while still being applicable to atomic and molecular ion species as well. The extraction aperture plate contours are set to minimize the beam cross over and at the same time shield the source from excess extraction electric fields thus allowing smaller values of the extraction gap. In addition, a novel focusing feature is integrated into these new optics which allows the beam to be either focused or de-focused in the non-dispersive plane by using a bipolar bias voltage of only a few kV over a broad range of beam energy. This is a superior solution to a stand-alone electrostatic lens solution, for example an einzel lens, which would require tens of kV of bias voltage in order to be able to focus an energetic beam.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: April 19, 2011
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Sami K. Hahto
  • Patent number: 7919402
    Abstract: A method of semiconductor manufacturing is disclosed in which doping is accomplished by the implantation of ion beams formed from ionized molecules, and more particularly to a method in which molecular and cluster dopant ions are implanted into a substrate with and without a co-implant of non-dopant cluster ion, such as a carbon cluster ion, wherein the dopant ion is implanted into the amorphous layer created by the co-implant in order to reduce defects in the crystalline structure, thus reducing the leakage current and improving performance of the semiconductor junctions. These compounds include co-implants of carbon clusters with implants of monomer or cluster dopants or simply implanting cluster dopants. In particular, the invention described herein consists of a method of implanting semiconductor wafers implanting semiconductor wafers with carbon clusters followed by implants of boron, phosphorus, or arsenic, or followed with implants of dopant clusters of boron, phosphorus, or arsenic.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: April 5, 2011
    Assignee: SemEquip, Inc.
    Inventors: Dale C. Jacobson, Thomas N. Horsky, Wade A. Krull, Karuppanan Sekar
  • Patent number: 7875125
    Abstract: The invention features in-situ cleaning process for an ion source and associated extraction electrodes and similar components of the ion-beam producing system, which chemically removes carbon deposits, increasing service lifetime and performance, without the need to disassemble the system. In particular, an aspect of the invention is directed to an activating, catalytic, or reaction promoting species added to the reactive species to effectively convert the non-volatile molecular residue into a volatile species which can be removed by conventional means.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 25, 2011
    Assignee: SemEquip, Inc.
    Inventors: Kevin S. Cook, Dennis Manning, Edward K. McIntyre, Richard Goldberg
  • Publication number: 20100320395
    Abstract: An ion source is disclosed for use in fabrication of semiconductors. The ion source includes an electron emitter that includes a cathode mounted external to the ionization chamber for use in fabrication of semiconductors. In accordance with an important aspect of the invention, the electron emitter is employed without a corresponding anode or electron optics. As such, the distance between the cathode and the ionization chamber can be shortened to enable the ion source to be operated in an arc discharge mode or generate a plasma. Alternatively, the ion source can be operated in a dual mode with a single electron emitter by selectively varying the distance between the cathode and the ionization chamber.
    Type: Application
    Filed: May 10, 2010
    Publication date: December 23, 2010
    Applicant: SemEquip, Inc.
    Inventors: Sami K. Hahto, Richard Goldberg, Edward McIntyre, Thomas N. Horsky
  • Patent number: 7838850
    Abstract: An ion source is disclosed for use in fabrication of semiconductors. The ion source includes an electron emitter that includes a cathode mounted external to the ionization chamber for use in fabrication of semiconductors. In accordance with an important aspect of the invention, the electron emitter is employed without a corresponding anode or electron optics. As such, the distance between the cathode and the ionization chamber can be shortened to enable the ion source to be operated in an arc discharge mode or generate a plasma. Alternatively, the ion source can be operated in a dual mode with a single electron emitter by selectively varying the distance between the cathode and the ionization chamber.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: November 23, 2010
    Assignee: SemEquip, Inc.
    Inventors: Sami K. Hahto, Richard Goldberg, Edward McIntyre, Thomas N. Horsky
  • Patent number: 7838842
    Abstract: An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B10Hx+, B18Hx+, P4+ or As4+, or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomers implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: November 23, 2010
    Assignee: Semequip, Inc.
    Inventor: Thomas N. Horsky
  • Patent number: 7834554
    Abstract: An ion source is disclosed for providing a range of ion beams consisting of either ionized clusters, such as B2Hx+, B5Hx+, B18Hx+, B18Hx+, P4+ or As4+, or monomer ions, such as Ge+, In+, Sb+, B+, As+, and P+, to enable cluster implants and monomer implants into silicon substrates for the purpose of manufacturing CMOS devices, and to do so with high productivity. The range of ion beams is generated by a universal ion source in accordance with the present invention which is configured to operate in two discrete modes: an electron impact mode, which efficiently produces ionized clusters, and an arc discharge mode, which efficiently produces monomer ions.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: November 16, 2010
    Assignee: SemEquip, Inc.
    Inventor: Thomas N. Horsky
  • Patent number: 7820981
    Abstract: The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases (F or Cl), and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: October 26, 2010
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III, George P. Sacco, Jr., Dale C. Jacobson, Wade A. Krull