Patents Assigned to SemEquip Inc.
  • Patent number: 7800312
    Abstract: A direct electron impact ion source is disclosed that includes a vaporizer for producing a process gas; an electron source for generating an electron beam; and an ionization chamber. The electron source is located outside the ionization chamber. Aligned apertures are provided in opposing walls of the ionization chamber to allow an electron beam to pass through the ionization chamber. The process gas is directed into the ionization chamber and ionized and extracted from the ionization chamber by way of an extraction aperture. In one embodiment, the direct electron impact ion source is configured with a form factor to enable it to be retrofit into the volume of an existing ion source , for example, an arc discharge type ion source. Alternatively, the direct electron impact ion source may be used together with an arc discharge ion source to create a dual mode or universal ion source.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: September 21, 2010
    Assignee: SemEquip, Inc.
    Inventor: Thomas Neil Horsky
  • Patent number: 7791047
    Abstract: Thermal control is provided for an extraction electrode of an ion-beam producing system that prevents formation of deposits and unstable operation and enables use with ions produced from condensable vapors and with ion sources capable of cold and hot operation. Electrical heating of the extraction electrode is employed for extracting decaborane or octadecaborane ions. Active cooling during use with a hot ion source prevents electrode destruction, permitting the extraction electrode to be of heat-conductive and fluorine-resistant aluminum composition. The service lifetime of the system is enhanced by provisions for in-situ etch cleaning of the ion source and extraction electrode, using reactive halogen gases, and by having features that extend the service duration between cleanings, including accurate vapor flow control and accurate focusing of the ion beam optics.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: September 7, 2010
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III, George P. Sacco, Jr., Dale Conrad Jacobson, Wade Allen Krull
  • Patent number: 7732787
    Abstract: An ion source is disclosed that is capable of providing ions of decaborane in commercial ion current levels to the ion extraction system of an ion implanter is provided, the ion source comprising an ionization chamber defined by walls enclosing an ionization volume, there being an ion extraction aperture in a side wall of the ionization chamber, arranged to enable the ion current to be extracted from the ionization volume by an extraction system, an electron gun mounted on a support that is outside of and thermally isolated from the walls of the ionization chamber, the ion extraction aperture plate is biased to a negative voltage with respect to the ionization chamber to further increase the drift velocity of the ions, and hence the maximum obtainable current in the resulting ion beam.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: June 8, 2010
    Assignee: Semequip, Inc.
    Inventor: Thomas Neil Horsky
  • Patent number: 7723233
    Abstract: A method is proposed for the fabrication of the gate electrode of a semiconductor device such that the effects of gate depletion are minimized. The method is comprised of a dual deposition process wherein the first step is a very thin layer that is doped very heavily by ion implantation. The second deposition, with an associated ion implant for doping, completes the gate electrode. With the two-deposition process, it is possible to maximize the doping at the gate electrode/gate dielectric interface while minimizing risk of boron penetration of the gate dielectric. A further development of this method includes the patterning of both gate electrode layers with the advantage of utilizing the drain extension and source/drain implants as the gate doping implants and the option of offsetting the two patterns to create an asymmetric device.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: May 25, 2010
    Assignee: Semequip, Inc.
    Inventors: Wade A Krull, Dale C. Jacobson
  • Patent number: 7723700
    Abstract: A vapor delivery system for delivering a steady flow of sublimated vapor to a vacuum chamber comprises a vaporizer of solid material, a mechanical throttling valve, and a pressure gauge, followed by a vapor conduit to the vacuum chamber. The vapor flow rate is determined by both the temperature of the vaporizer and the setting of the conductance of the mechanical throttle valve located between the vaporizer and the vacuum chamber. The temperature of the vaporizer is determined by closed-loop control to a set-point temperature. The mechanical throttle valve is electrically controlled, e.g. the valve position is under closed-loop control to the output of the pressure gauge. In this way the vapor flow rate can be generally proportional to the pressure gauge output. All surfaces exposed to the vapor from the vaporizer to the vacuum chamber are heated to prevent condensation.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: May 25, 2010
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III
  • Publication number: 20100111801
    Abstract: The invention provides new methods for the synthesis of isotopically enriched metal borohydrides, metal tetrahydroundecaborate salts, and decaborane from isotopically enriched 10B-boric acid or 11B-boric acid. The invention is particularly useful for synthesis of isotopically enriched sodium or lithium borohydride, MB11H14 (where M is Li, Na, K, or alkylammonium), and decaborane.
    Type: Application
    Filed: December 31, 2009
    Publication date: May 6, 2010
    Applicant: SEMEQUIP INC.
    Inventors: Bernard Spielvogel, Kevin Cook
  • Patent number: 7666771
    Abstract: A process is disclosed which incorporates implantation of a carbon cluster into a substrate to improve the characteristics of transistor junctions when the substrates are doped with Boron and Phosphorous in the manufacturing of PMOS transistor structures in integrated circuits. There are two processes which result from this novel approach: (1) diffusion control for USJ formation; and (2) high dose carbon implantation for stress engineering. Diffusion control for USJ formation is demonstrated in conjunction with a boron or shallow boron cluster implant of the source/drain structures in PMOS. More particularly, first, a cluster carbon ion, such as C16Hx+, is implanted into the source/drain region at approximately the same dose as the subsequent boron implant; followed by a shallow boron, boron cluster, phosphorous or phosphorous cluster ion implant to form the source/drain extensions, preferably using a borohydride cluster, such as B18Hx+ or B10Hx+.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: February 23, 2010
    Assignee: Semequip, Inc.
    Inventors: Wade A. Krull, Thomas N. Horsky
  • Patent number: 7641879
    Abstract: The invention provides new methods for the synthesis of isotopically enriched metal borohydrides, metal tetrahydroundecaborate salts, and decaborane from isotopically enriched 10B-boric acid or 11B-boric acid. The invention is particularly useful for synthesis of isotopically enriched sodium or lithium borohydride, MB11H14 (where M is Li, Na, K, or alkylammonium), and decaborane.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: January 5, 2010
    Assignee: SemEquip Inc.
    Inventors: Bernard Spielvogel, Kevin Cook
  • Patent number: 7629590
    Abstract: The service lifetime of an ion source is enhanced or prolonged by the source having provisions for in-situ etch cleaning of the ion source and of an extraction electrode, using reactive halogen gases, and by having features that extend the service duration between cleanings. The latter include accurate vapor flow control, accurate focusing of the ion beam optics, and thermal control of the extraction electrode that prevents formation of deposits or prevents electrode destruction. An apparatus comprised of an ion source for generating dopant ions for semiconductor wafer processing is coupled to a remote plasma source which delivers F or Cl ions to the first ion source for the purpose of cleaning deposits in the first ion source and the extraction electrode. These methods and apparatus enable long equipment uptime when running condensable feed gases such as sublimated vapor sources, and are particularly applicable for use with so-called cold ion sources.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: December 8, 2009
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Robert W. Milgate, III, George P. Sacco, Jr., Dale C. Jacobson, Wade A. Krull
  • Patent number: 7609003
    Abstract: Ion implantation with high brightness, ion beam by ionizing gas or vapor, e.g. of dimers, or decaborane, by direct electron impact ionization adjacent the outlet aperture (46, 176) of the ionization chamber (80; 175)). Preferably: conditions are maintained that produce a substantial ion density and limit the transverse kinetic energy of the ions to less than 0.7 eV; width of the ionization volume adjacent the aperture is limited to width less than about three times the width of the aperture; the aperture is extremely elongated; magnetic fields are avoided or limited; low ion beam noise is maintained; conditions within the ionization chamber are maintained that prevent formation of an arc discharge. With ion beam optics, such as the batch implanter of FIG. (20), or in serial implanters, ions from the ion source are transported to a target surface and implanted; advantageously, in some cases, in conjunction with acceleration-deceleration beam lines employing cluster ion beams.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: October 27, 2009
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Brian C. Cohen, Wade A. Krull, George P. Sacco, Jr.
  • Publication number: 20090206270
    Abstract: A multipurpose ion implanter beam line configuration constructed for enabling implantation of common monatomic dopant ion species and cluster ions, the beam line configuration having a mass analyzer magnet defining a pole gap of substantial width between ferromagnetic poles of the magnet and a mass selection aperture, the analyzer magnet sized to accept art ion beam from a slot-form ion source extraction aperture of at least about 80 mm height and at least about 7 mm width, and to produce dispersion at the mass selection aperture in a plane corresponding to the width of the beam, the mass selection aperture capable of being set to a mass-selection width sized to select a beam of the cluster ions of the same dopant species but incrementally differing molecular weights, the mass selection aperture also capable of being set to a substantially narrower mass-selection width and the analyzer magnet having a resolution at the mass selection aperture sufficient to enable selection of a beam of monatomic dopant ions o
    Type: Application
    Filed: June 13, 2007
    Publication date: August 20, 2009
    Applicant: SEMEQUIP, INC.
    Inventors: Hilton F. Glayish, Dale C. Jacobson, Sami K. Hahto, Thomas N. Horsky
  • Patent number: 7528550
    Abstract: An ion implantation is disclosed that includes an ionization chamber having a restricted outlet aperture and configured so that the gas or vapor in the ionization chamber is at a pressure substantially higher than the pressure within an extraction region into which the ions are to be extracted external to the ionization chamber. The vapor is ionized by direct electron impact ionization by an electron source that is in a region adjacent the outlet aperture of the ionization chamber to produce ions from the molecules of the gas or vapor to a density of at least 1010 cm?3 at the aperture while maintaining conditions that limit the transverse kinetic energy of the ions to less than about 0.7 eV. The beam is transported to a target surface and the ions of the transported ion beam are implanted into the target.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: May 5, 2009
    Assignee: SemEquip, Inc.
    Inventors: Thomas N. Horsky, Brian C. Cohen, Wade A. Krull, George P. Sacco, Jr.
  • Patent number: 7524477
    Abstract: The invention provides new methods for synthesis of B9H9?, B10H102?, B11H14?, and B12H122? salts, particularly alkylammonium salts of B9H9?, B10H102?, B11H14?, and B12H122?. More particularly, the invention provides methods of preparing tetraalkylamronium salts of B9H9?, B10H102?, B11H14?, and B12H122? by pyrolysis of tetraalkylammonium borohydrides under controlled conditions. The invention additionally provides methods of preparing, in an atom efficient process, octadecaborane from the tetraalkylammonium salts of the invention. Preferred methods of the invention are suitable for preparation of isotopically enriched boranes, particularly isotopically enriched 10B18H22 and 11B18H22.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: April 28, 2009
    Assignee: SemEquip Inc.
    Inventors: Bernard Spielvogel, Kevin Cook
  • Patent number: 7491953
    Abstract: An ion implantation device and a method of manufacturing a semiconductor device is described, wherein ionized boron hydride molecular clusters are implanted to form P-type transistor structures. The molecular cluster ions have the chemical form BnHx+ and BnHx?, where 10<n<100 and 0?x?n+4. The use of such boron hydride clusters results in a dramatic increase in wafer throughput, as well as improved device yields through the reduction of wafer charging. A method of manufacturing a semiconductor device is further described, comprising the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 17, 2009
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Dale C. Jacobson
  • Patent number: 7479643
    Abstract: The ionization chamber is defined by a removable block disposed in heat transfer relationship to a temperature controlled mounting block, preferably the removable block comprised of graphite, silicon carbide or aluminum. The ion source includes a mounting flange for joining the ion source to the housing of an ion implanter, the ionization chamber being located on the inside of the mounting flange and the vaporizer being removably mounted to the exterior of the mounting flange via at least one isolation valve which is separable from the mounting flange with the vaporizer, enabling the vaporizer charge volume to be isolated by the valve in closed position during handling, preferably there being two isolation valve in series, one unified with and transportable with a removed vaporizer unit, and one constructed to remain with and isolate the remainder of the ion source from the atmosphere.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 20, 2009
    Assignee: SemEquip, Inc.
    Inventor: Thomas Neil Horsky
  • Patent number: 7394202
    Abstract: An ion implantation is disclosed that includes an ionization chamber having a restricted outlet aperture and configured so that the gas or vapor in the ionization chamber is at a pressure substantially higher than the pressure within an extraction region into which the ions are to be extracted external to the ionization chamber. The vapor is ionized by direct electron impact ionization by an electron source that is in a region adjacent the outlet aperture of the ionization chamber to produce ions from the molecules of the gas or vapor to a density of at least 1010 cm?3 at the aperture while maintaining conditions that limit the transverse kinetic energy of the ions to less than about 0.7 eV. The beam is transported to a target surface and the ions of the transported ion beam are implanted into the target.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: July 1, 2008
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Brian C. Cohen, Wade A. Krull, George P. Sacco, Jr.
  • Patent number: 7185602
    Abstract: An ion implantation device for vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system and delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source. The ion implantation device includes an ion source which can operate without an arc plasma, which can improve the emittance properties and the purity of the beam and without a strong applied magnetic field, which can improve the emittance properties of the beam. The ion source is configured so that it can be retrofit into the ion source design space of an existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: March 6, 2007
    Assignee: SemEquip, Inc.
    Inventors: Thomas Neil Horsky, John Noel Williams
  • Patent number: 7112804
    Abstract: An ion implantation device for vaporizing decaborane and other heat-sensitive materials via a novel vaporizer and vapor delivery system and delivering a controlled, low-pressure drop flow of vapors, e.g. decaborane, into the ion source. The ion implantation device includes an ion source which can operate without an arc plasma, which can improve the emittance properties and the purity of the beam and without a strong applied magnetic field, which can improve the emittance properties of the beam. The ion source is configured so that it can be retrofit into the ion source design space of an existing Bernas source-based ion implanters and the like or otherwise enabling compatibility with other ion source designs.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: September 26, 2006
    Assignee: SemEquip, Inc.
    Inventors: Thomas Neil Horsky, John Noel Williams
  • Patent number: 7107929
    Abstract: An ion source for an ion implantation system includes a vaporizer for producing a process gas; an electron source for generating an electron beam to ionize the process gas within a ionization chamber. The ionization chamber includes an extraction aperture for extracting an ion beam. The ion source, in accordance with the preset invention, is configured to be able to be retrofit into the design space of existing ion sources in, for example, Bernas source-based ion implanters.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: September 19, 2006
    Assignee: SemEquip, Inc.
    Inventors: Thomas Neil Horsky, John Noel Williams
  • Patent number: 7064491
    Abstract: Ion implantation with high brightness, ion beam by ionizing gas or vapor, e.g. of dimers, or decaborane, by direct electron impact ionization adjacent the outlet aperture (46, 176) of the ionization chamber (80; 175)). Preferably: conditions are maintained that produce a substantial ion density and limit the transverse kinetic energy of the ions to less than 0.7 eV; width of the ionization volume adjacent the aperture is limited to width less than about three times the width of the aperture; the aperture is extremely elongated; magnetic fields are avoided or limited; low ion beam noise is maintained; conditions within the ionization chamber are maintained that prevent formation of an arc discharge. With ion beam optics, such as the batch implanter of FIG. (20), or in serial implanters, ions from the ion source are transported to a target surface and implanted; advantageously, in some cases, in conjunction with acceleration-deceleration beam lines employing cluster ion beams.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: June 20, 2006
    Assignee: Semequip, Inc.
    Inventors: Thomas N. Horsky, Brian C. Cohen, Wade A. Krull, George P. Sacco, Jr.