Patents Assigned to Sensor Electronics Technology, Inc.
  • Patent number: 11925152
    Abstract: A solution for illuminating plants can include: a set of visible light sources configured to emit visible radiation directed at the plant; a set of infrared radiation sources configured to emit ultraviolet radiation directed at the plant; a feedback component configured to acquire data regarding the plant; and a control unit configured to control and adjust radiation directed at the plant based on the data.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 12, 2024
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 11925153
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: March 12, 2024
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Patent number: 11830963
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The heterostructure can include a p-type interlayer located between the electron blocking layer and the p-type contact layer. In an embodiment, the electron blocking layer can have a region of graded transition. The p-type interlayer can also include a region of graded transition.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: November 28, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 11791438
    Abstract: A heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can include a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: October 17, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Patent number: 11784280
    Abstract: A heterostructure with reduced optical losses is disclosed. The heterostructure includes a set of n-type layers; an active region that generates radiation at a peak emitted wavelength; and a set of p-type layers located adjacent to the active region. A reflective structure can be located adjacent to the set of p-type layers. A thickness of the set of p-type layers can be configured to promote constructive interference of the reflected radiation with radiation emitted by the active region in a direction toward the set of n-type layers.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: October 10, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Joseph Dion, Devendra Diwan, Brandon A Robinson, Rakesh B Jain
  • Patent number: 11751310
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 5, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, III, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Robert M. Kennedy
  • Patent number: 11656387
    Abstract: A diffusive layer including a laminate of a plurality of transparent films is provided. At least one of the plurality of transparent films includes a plurality of diffusive elements with a concentration that is less than a percolation threshold. The plurality of diffusive elements are optical elements that diffuse light that is impinging on such element. The plurality of diffusive elements can be diffusively reflective, diffusively transmitting or combination of both. The plurality of diffusive elements can include fibers, grains, domains, and/or the like. The at least one film can also include a powder material for improving the diffusive emission of radiation and a plurality of particles that are fluorescent when exposed to radiation.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: May 23, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 11611011
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The heterostructure can include a p-type interlayer located between the electron blocking layer and the p-type contact layer. In an embodiment, the electron blocking layer can have a region of graded transition. The p-type interlayer can also include a region of graded transition.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: March 21, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 11608279
    Abstract: Ultraviolet irradiation of liquids for purposes of sterilization, disinfection, cleaning and/or treatment. A liquid collection reservoir can receive an inflow of a liquid. A filtering unit can filter the inflow of liquid received by the liquid collection reservoir. A liquid chamber stores the liquid. Ultraviolet light emitting sources located about the liquid chamber irradiate the liquid in the liquid chamber with ultraviolet light. A control unit, operatively coupled to the ultraviolet light emitting sources, controls the irradiation of the liquid in the liquid chamber with the ultraviolet light emitting sources. The control unit is configured to control an intensity and a duration of the irradiation as a function of time that the liquid is stored in the liquid chamber and the amount of the liquid that is in the liquid chamber.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: March 21, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Patent number: 11508871
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The electron blocking layer is located between the active region and the p-type contact layer. In an embodiment, the electron blocking layer can include a plurality of sublayers that vary in composition.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 22, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Publication number: 20220231199
    Abstract: A mounting structure for mounting a set of optoelectronic devices is provided. A mounting structure for a set of optoelectronic devices can include: a body formed of an insulating material; and a heatsink element embedded within the body. A heatsink can be located adjacent to the mounting structure. The set of optoelectronic devices can be mounted on a side of the mounting structure opposite of the heatsink.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
  • Patent number: 11375595
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 28, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Robert M. Kennedy
  • Publication number: 20220184260
    Abstract: An illuminator comprising more than one set of ultraviolet radiation sources. A first set of ultraviolet radiation sources operate in a wavelength range of approximately 270 nanometers to approximately 290 nanometers. A second set of ultraviolet radiation sources operate in a wavelength range of approximately 380 nanometers to approximately 420 nanometers. The illuminator can also include a set of sensors for acquiring data regarding at least one object to be irradiated by the first and the second set of ultraviolet radiation sources. A control system configured to control and adjust a set of radiation settings for the first and the second set of ultraviolet radiation sources based on the data acquired by the set of sensors.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Arthur Peter Barber, III
  • Patent number: 11357998
    Abstract: A wearable ultraviolet light phototherapy device is disclosed. The wearable ultraviolet light phototherapy device can have a substrate or a housing that is to be worn on a body part of a patient. At least one ultraviolet light emitting source located about the substrate or housing can deliver ultraviolet radiation into the body part of the patient. A control module can control operation of the at least one ultraviolet light emitting source. To this extent, the control module can direct the at least one ultraviolet light emitting source to deliver a predetermined amount of ultraviolet radiation at a peak wavelength into the body part of a patient. The control module can determine the predetermined amount of ultraviolet radiation as a function of the patient's susceptibility to ultraviolet radiation.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: June 14, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Faris Mills Morrison Estes, Robert M. Kennedy
  • Publication number: 20220165909
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The heterostructure can include a p-type interlayer located between the electron blocking layer and the p-type contact layer. In an embodiment, the electron blocking layer can have a region of graded transition. The p-type interlayer can also include a region of graded transition.
    Type: Application
    Filed: February 9, 2022
    Publication date: May 26, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Publication number: 20220159912
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Publication number: 20220165910
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The heterostructure can include a p-type interlayer located between the electron blocking layer and the p-type contact layer. In an embodiment, the electron blocking layer can have a region of graded transition. The p-type interlayer can also include a region of graded transition.
    Type: Application
    Filed: February 9, 2022
    Publication date: May 26, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 11329196
    Abstract: A mounting structure for mounting a set of optoelectronic devices is provided. A mounting structure for a set of optoelectronic devices can include: a body formed of an insulating material; and a heatsink element embedded within the body. A heatsink can be located adjacent to the mounting structure. The set of optoelectronic devices can be mounted on a side of the mounting structure opposite of the heatsink.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: May 10, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Grigory Simin, Alexander Dobrinsky
  • Publication number: 20220118140
    Abstract: Aspects of the invention provide a system for disinfecting a humidifier containing a volume of water. An enclosure, such as a humidifier, includes a first chamber, a second chamber, a humidifier component, a third chamber, and a control unit. The first chamber contains a volume of water and a portion of the water flows into the second chamber. A first set of ultraviolet radiation sources within the first chamber can be configured to generate UV-A radiation, while a second set of ultraviolet radiation sources within the second chamber can be configured to generate UV-C radiation. In operation, the humidifier component adjacent to the second chamber creates water vapor using the portion of the volume of water within the second chamber. The water vapor flows into a third chamber that contains the water vapor and releases the water vapor into the ambient.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Publication number: 20220072169
    Abstract: Disinfection of a surface, such as a mouthpiece of a water bottle, using ultraviolet radiation is disclosed. A cover assembly can include a cover configured to selectively enclose the surface to be disinfected, such as the mouthpiece. The cover assembly can be configured such that ultraviolet radiation can be emitted into an interior volume at least partially formed by the cover and including the surface. The cover assembly can further include a power source which provides power to one or more ultraviolet light sources that emit the ultraviolet radiation. The cover assembly can be a mouthpiece cover assembly physically separate from a container and top cover or integrated in the top cover. A container and a top cover including one or more features for improved cleanliness are also disclosed.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky