Patents Assigned to Sensor Electronics Technology, Inc.
  • Publication number: 20220118140
    Abstract: Aspects of the invention provide a system for disinfecting a humidifier containing a volume of water. An enclosure, such as a humidifier, includes a first chamber, a second chamber, a humidifier component, a third chamber, and a control unit. The first chamber contains a volume of water and a portion of the water flows into the second chamber. A first set of ultraviolet radiation sources within the first chamber can be configured to generate UV-A radiation, while a second set of ultraviolet radiation sources within the second chamber can be configured to generate UV-C radiation. In operation, the humidifier component adjacent to the second chamber creates water vapor using the portion of the volume of water within the second chamber. The water vapor flows into a third chamber that contains the water vapor and releases the water vapor into the ambient.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Publication number: 20220072169
    Abstract: Disinfection of a surface, such as a mouthpiece of a water bottle, using ultraviolet radiation is disclosed. A cover assembly can include a cover configured to selectively enclose the surface to be disinfected, such as the mouthpiece. The cover assembly can be configured such that ultraviolet radiation can be emitted into an interior volume at least partially formed by the cover and including the surface. The cover assembly can further include a power source which provides power to one or more ultraviolet light sources that emit the ultraviolet radiation. The cover assembly can be a mouthpiece cover assembly physically separate from a container and top cover or integrated in the top cover. A container and a top cover including one or more features for improved cleanliness are also disclosed.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Publication number: 20220073377
    Abstract: A solution for irradiating a flowing fluid through a channel with ultraviolet radiation is provided. Ultraviolet radiation sources can be located within the channel in order to direct ultraviolet radiation towards the flowing fluid and/or the interior of the channel. A valve can be located adjacent to the channel to control the flow rate of the fluid. A control system can control and adjust the ultraviolet radiation based on the flow rate of the fluid and a user input component can receive a user input for the control system to adjust the ultraviolet radiation. The ultraviolet radiation sources, the control system, the user input component, and any other components that require electricity can receive power from a rechargeable power supply. An electrical generator located within the channel can convert energy from the fluid flowing through the channel into electricity for charging the rechargeable power supply.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky
  • Patent number: 11266759
    Abstract: An illuminator comprising more than one set of ultraviolet radiation sources. A first set of ultraviolet radiation sources operate in a wavelength range of approximately 270 nanometers to approximately 290 nanometers. A second set of ultraviolet radiation sources operate in a wavelength range of approximately 380 nanometers to approximately 420 nanometers. The illuminator can also include a set of sensors for acquiring data regarding at least one object to be irradiated by the first and the second set of ultraviolet radiation sources. A control system configured to control and adjust a set of radiation settings for the first and the second set of ultraviolet radiation sources based on the data acquired by the set of sensors.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: March 8, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventor: Arthur Peter Barber, III
  • Publication number: 20220061228
    Abstract: A solution for controlling mildew in a cultivated area is described. The solution can include a set of ultraviolet sources that are configured to emit ultraviolet and/or blue-ultraviolet radiation to harm mildew present on a plant or ground surface. A set of sensors can be utilized to acquire plant data for at least one plant surface of a plant, which can be processed to determine a presence of mildew on the at least one plant surface. Additional features can be included to further affect the growth environment for the plant. A feedback process can be implemented to improve one or more aspects of the growth environment.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Applicant: Sensor Electronic Technology, Inc.,
    Inventors: Arthur Peter Barber, III, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Patent number: 11246266
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: February 15, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Arthur Peter Barber, III
  • Publication number: 20220026607
    Abstract: A diffusive layer including a laminate of a plurality of transparent films is provided. At least one of the plurality of transparent films includes a plurality of diffusive elements with a concentration that is less than a percolation threshold. The plurality of diffusive elements are optical elements that diffuse light that is impinging on such element. The plurality of diffusive elements can be diffusively reflective, diffusively transmitting or combination of both. The plurality of diffusive elements can include fibers, grains, domains, and/or the like. The at least one film can also include a powder material for improving the diffusive emission of radiation and a plurality of particles that are fluorescent when exposed to radiation.
    Type: Application
    Filed: October 11, 2021
    Publication date: January 27, 2022
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 11207435
    Abstract: Aspects of the invention provide a system for disinfecting a humidifier containing a volume of water. An enclosure, such as a humidifier, includes a first chamber, a second chamber, a humidifier component, a third chamber, and a control unit. The first chamber contains a volume of water and a portion of the water flows into the second chamber. A first set of ultraviolet radiation sources within the first chamber can be configured to generate UV-A radiation, while a second set of ultraviolet radiation sources within the second chamber can be configured to generate UV-C radiation. In operation, the humidifier component adjacent to the second chamber creates water vapor using the portion of the volume of water within the second chamber. The water vapor flows into a third chamber that contains the water vapor and releases the water vapor into the ambient.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 28, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Patent number: 11173221
    Abstract: Disinfection of a surface, such as a mouthpiece of a water bottle, using ultraviolet radiation is disclosed. A cover assembly can include a cover configured to selectively enclose the surface to be disinfected, such as the mouthpiece. The cover assembly can be configured such that ultraviolet radiation can be emitted into an interior volume at least partially formed by the cover and including the surface. The cover assembly can further include a power source which provides power to one or more ultraviolet light sources that emit the ultraviolet radiation. The cover assembly can be a mouthpiece cover assembly physically separate from a container and top cover or integrated in the top cover. A container and a top cover including one or more features for improved cleanliness are also disclosed.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: November 16, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventor: Alexander Dobrinsky
  • Patent number: 11174174
    Abstract: A solution for irradiating a flowing fluid through a channel with ultraviolet radiation is provided. Ultraviolet radiation sources can be located within the channel in order to direct ultraviolet radiation towards the flowing fluid and/or the interior of the channel. A valve can be located adjacent to the channel to control the flow rate of the fluid. A control system can control and adjust the ultraviolet radiation based on the flow rate of the fluid and a user input component can receive a user input for the control system to adjust the ultraviolet radiation. The ultraviolet radiation sources, the control system, the user input component, and any other components that require electricity can receive power from a rechargeable power supply. An electrical generator located within the channel can convert energy from the fluid flowing through the channel into electricity for charging the rechargeable power supply.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 16, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky
  • Patent number: 11166415
    Abstract: A solution for controlling mildew in a cultivated area is described. The solution can include a set of ultraviolet sources that are configured to emit ultraviolet and/or blue-ultraviolet radiation to harm mildew present on a plant or ground surface. A set of sensors can be utilized to acquire plant data for at least one plant surface of a plant, which can be processed to determine a presence of mildew on the at least one plant surface. Additional features can be included to further affect the growth environment for the plant. A feedback process can be implemented to improve one or more aspects of the growth environment.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 9, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, III, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Patent number: 11143799
    Abstract: A diffusive layer including a laminate of a plurality of transparent films is provided. At least one of the plurality of transparent films includes a plurality of diffusive elements with a concentration that is less than a percolation threshold. The plurality of diffusive elements are optical elements that diffuse light that is impinging on such element. The plurality of diffusive elements can be diffusively reflective, diffusively transmitting or combination of both. The plurality of diffusive elements can include fibers, grains, domains, and/or the like. The at least one film can also include a powder material for improving the diffusive emission of radiation and a plurality of particles that are fluorescent when exposed to radiation.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: October 12, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 11124750
    Abstract: Ultraviolet irradiation of fluids for the purposes of disinfection, sterilization and modification of a target organic compound found within the fluids. The target compound in the fluids can have an absorption spectra with an ultraviolet wavelength ranging from 230 nm to 360 nm. The absorption spectra includes a first and second set of wavelengths corresponding to absorption peaks and absorption valleys in the absorption spectra, respectively. A-set of ultraviolet radiation sources irradiate the fluids. The set of ultraviolet radiation sources operate at a set of peak wavelengths ranging from 230 nm to 360 nm with a peak full width at half maximum that is less than 20 nm. The set of peak wavelengths are proximate to at least one wavelength in the second set of wavelengths corresponding to the absorption valleys in the absorption spectra with a variation of a full width half maximum of the absorption valley.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: September 21, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Faris Mills Morrison Estes, Alexander Dobrinsky
  • Patent number: 11058312
    Abstract: Approaches for evaluating fluid flow based on fluorescent sensing is disclosed. In one approach, a nanoparticle injector is configured to inject nanoparticles into fluid flowing through a conduit. A detector is configured to determine a presence of the nanoparticles in the flow of the fluid. The detector can include a radiation source configured to irradiate the fluid with a target radiation and a fluorescent meter configured to measure an amount of fluorescence emitted from the fluid irradiated with the radiation. A control unit is configured to determine the flow of the fluid in the conduit as a function of the measured amount of fluorescence.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: July 13, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Patent number: 11063178
    Abstract: A semiconductor heterostructure for an optoelectronic device with improved light emission is disclosed. The heterostructure can include a first semiconductor layer having a first index of refraction n1. A second semiconductor layer can be located over the first semiconductor layer. The second semiconductor layer can include a laminate of semiconductor sublayers having an effective index of refraction n2. A third semiconductor layer having a third index of refraction n3 can be located over the second semiconductor layer. The first index of refraction n1 is greater than the second index of refraction n2, which is greater than the third index of refraction n3.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: July 13, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky
  • Publication number: 20210202791
    Abstract: A heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can include a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Patent number: 11027319
    Abstract: A solution for illuminating an area and/or treating a substance with light, such as ultraviolet radiation, is described. The solution can use one or more solid state ultraviolet sources in conjunction with one or more ultraviolet lamps to illuminate a treatment region with ultraviolet radiation. A control component can individually operate the solid state ultraviolet source(s) and the ultraviolet lamp(s) to illuminate the treatment region with ultraviolet radiation having a predetermined minimum ultraviolet intensity.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: June 8, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky
  • Patent number: 10994040
    Abstract: An approach for the treatment of surfaces in public places with ultraviolet light is disclosed. In one embodiment, a disinfection illuminator having ultraviolet radiation sources can irradiate a number of contact surfaces. A control unit can control the ultraviolet irradiation of the contact surfaces. The disinfection illuminator is suitable for a wide variety of devices that are used by the general public. Gas station pumps, door knobs, key pads, and bathrooms are illustrative of examples of some devices and places having commonly-used surfaces that can be treated by the disinfection illuminator.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: May 4, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Robert M. Kennedy, Faris Mills Morrison Estes, Alexander Dobrinsky
  • Publication number: 20210105881
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Robert M. Kennedy
  • Patent number: RE48943
    Abstract: Heterostructures for use in optoelectronic devices are described. One or more parameters of the heterostructure can be configured to improve the reliability of the corresponding optoelectronic device. The materials used to create the active structure of the device can be considered in configuring various parameters the n-type and/or p-type sides of the heterostructure.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: February 22, 2022
    Assignee: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska