Patents Assigned to SENSOR
  • Patent number: 9746421
    Abstract: An apparatus, method and kit includes one or more use protocol indicators having a color changeable dye, the dye being translucent or having a first color upon immediate exposure to an environment and for a defined time thereafter and the dye changing color after exposure to the environment for the defined time. A dual environment indicator includes a first indicator color changeable dye being translucent or having a first color upon immediate exposure to a first environment and changing color after exposure to a second environment and a second indicator color changeable dye being translucent or having a first color upon immediate exposure to the second environment and for a defined time thereafter and changing color after exposure to the second environment for the defined time. A time exposure indicator comprises at least one color changeable dye disposed to change color in a sequential manner.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 29, 2017
    Assignee: Sensor International, LLC
    Inventor: Gregory Heacock
  • Patent number: 9746386
    Abstract: A strapping device for a pipe and methods of using the strapping device to non-invasively detect pressure inside the pipe and the residual stress exerted on the pipe. The strapping device includes a linked or a solid band adapted to be fitted around an outside diameter of the pipe. The strapping device further includes a sensor for measuring at least one of a change in the outside diameter of the pipe due to a corresponding change in pressure inside the pipe and to detect the stress or strain transferred from the pipe. The measurements can be conveniently processed in a circuit board coupled to the strapping device or in a remote location. The measurements can be transmitted through wires or digitally transmitted to the circuit board.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: August 29, 2017
    Assignee: ADVANCED SENSOR DESIGN TECHNOLOGIES, LLC
    Inventor: Keith Jenkins
  • Publication number: 20170238867
    Abstract: A method and apparatus monitors chronic disease state of a patient. The method may include extracting, in a processor, for each of a plurality of monitoring sessions, a respiratory feature from a respiratory signal indicative of the patient's respiration during the monitoring session, the respiratory signal derived from at least one sensor; and computing, in a processor, a stability measure of the patient for a monitoring session, the stability measure representing an indication of a change point having occurred at the monitoring session in a statistical distribution of the respiratory feature.
    Type: Application
    Filed: May 25, 2015
    Publication date: August 24, 2017
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Faizan JAVED, Steven Paul FARRUGIA
  • Patent number: 9741899
    Abstract: An interface including roughness components for improving the propagation of radiation through the interface is provided. The interface includes a first profiled surface of a first layer comprising a set of large roughness components providing a first variation of the first profiled surface having a first characteristic scale and a second profiled surface of a second layer comprising a set of small roughness components providing a second variation of the second profiled surface having a second characteristic scale. The first characteristic scale is approximately an order of magnitude larger than the second characteristic scale. The surfaces can be bonded together using a bonding material, and a filler material also can be present in the interface.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 22, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9742314
    Abstract: An implantable device for harvesting in-vivo blood pressure fluctuations' energy to generate electrical power for powering medical implants while avoiding the need for external power sources.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: August 22, 2017
    Assignee: Irvine Sensors Corp.
    Inventor: Itzhak Sapir
  • Patent number: 9741802
    Abstract: A semiconductor device with a breakdown preventing layer is provided. The breakdown preventing layer can be located in a high-voltage surface region of the device. The breakdown preventing layer can include an insulating film or a low conductive film with conducting elements embedded therein. The conducting elements can be arranged along a lateral length of the insulating film or the low conductive film. The conducting elements can vary in at least one of composition, doping, conductivity, size, thickness, shape, and distance from the device channel along a lateral length of the insulating film or the low conductive film, or in a direction that is perpendicular to the lateral length.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: August 22, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Patent number: 9739879
    Abstract: The present invention relates to a method for determining distance (R) and radial velocity (v) of an object in relation to a measurement location, in which method radar signals are emitted and after reflection on the object are received again at the measurement location, wherein the emitted radar signals are subdivided within a measuring cycle into numerous segments (10) in which the frequency of the radar signals is gradually changed from an initial value (fA, fB) to the end value and each received reflected signal is subjected across one segment (10) to a first evaluation to detect frequency peaks and additionally a subsequent second evaluation of the signals for the frequency peaks of all segments (10) of the measuring cycle is carried out to determine a Doppler frequency component as a measure of the radial velocity (v).
    Type: Grant
    Filed: March 16, 2013
    Date of Patent: August 22, 2017
    Assignee: S.M.S. Smart Microwave Sensors GMBH
    Inventor: Hermann Rohling
  • Patent number: 9742475
    Abstract: A system and method are provided in which a radio-frequency channel is used in combination with a second validation channel to verify the proximity of two devices to each other. An RF channel is used to detect whether two devices are within a first, larger distance from one another and to enable communication between the two devices, whilst a second, validation channel is used to accurately verify that the two devices are within second, smaller distance from one another. In some embodiments, the second verification channel is a magnetic channel.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: August 22, 2017
    Assignee: Sensor Labs Limited
    Inventors: Edward Pellew, William Neep
  • Publication number: 20170231504
    Abstract: An apparatus, system, and method for monitoring a person suffering from a chronic medical condition predicts and assesses physiological changes which could affect the care of that subject. Examples of such chronic diseases include (but are not limited to) heart failure, chronic obstructive pulmonary disease, asthma, and diabetes. Monitoring includes measurements of respiratory movements, which can then be analyzed for evidence of changes in respiratory rate, or for events such as hypopneas, apneas and periodic breathing. Monitoring may be augmented by the measurement of nocturnal heart rate in conjunction with respiratory monitoring. Additional physiological measurements can also be taken such as subjective symptom data, blood pressure, blood oxygen levels, and various molecular markers. Embodiments for detection of respiratory patterns and heart rate are disclosed, together with exemplar implementations of decision processes based on these measurements.
    Type: Application
    Filed: November 4, 2016
    Publication date: August 17, 2017
    Applicant: ResMed Sensor Technologies Limited
    Inventors: Conor Heneghan, Alberto Zaffaroni, Philip De Chazal, Redmond Shouldice
  • Publication number: 20170236054
    Abstract: A neural logic unit network acting as an agent to achieve machine or device consciousness and intent is disclosed. More specifically, an agent of consciousness and intent (The Agent) is disclosed consisting of neuronal logic units upon which are mapped and connected to the individual outputs of the host system's entire sensorium and which neuronal logic units are activated by the simultaneous presentation of the results of the host system's recognition, tracking, analyses and characterization computations similar to those performed by biological unconscious brains. The embodiment of the assembly of neural logic units is referred to as Hyper Aware Logic.
    Type: Application
    Filed: March 9, 2015
    Publication date: August 17, 2017
    Applicant: Irvine Sensors Corp.
    Inventor: John C. Carson
  • Patent number: 9734692
    Abstract: A detection system for detecting a residential pest, the detection system may include a housing, a vibration sensor that is configured to sense vibration signals; a processor that is configured to process the vibration signals and detect residential pest activities; a coupler that once connected to a metal-including element of a resident vibrationally couples the metal-including element to the vibration sensor.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: August 15, 2017
    Assignee: WALL SENSOR LTD.
    Inventors: Yosef Korakin, Nir Geva
  • Patent number: 9735315
    Abstract: A heterostructure for use in fabricating an optoelectronic device is provided. The heterostructure includes a layer, such as an n-type contact or cladding layer, that includes thin sub-layers inserted therein. The thin sub-layers can be spaced throughout the layer and separated by intervening sub-layers fabricated of the material for the layer. The thin sub-layers can have a distinct composition from the intervening sub-layers, which alters stresses present during growth of the heterostructure.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 15, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Daniel Billingsley, Robert M. Kennedy, Wenhong Sun, Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20170229610
    Abstract: A solution for designing and/or fabricating a structure including a quantum well and an adjacent barrier is provided. A target band discontinuity between the quantum well and the adjacent barrier is selected to coincide with an activation energy of a dopant for the quantum well and/or barrier. For example, a target valence band discontinuity can be selected such that a dopant energy level of a dopant in the adjacent barrier coincides with a valence energy band edge for the quantum well and/or a ground state energy for free carriers in a valence energy band for the quantum well. Additionally, a target doping level for the quantum well and/or adjacent barrier can be selected to facilitate a real space transfer of holes across the barrier. The quantum well and the adjacent barrier can be formed such that the actual band discontinuity and/or actual doping level(s) correspond to the relevant target(s).
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Remigijus Gaska, Jinwei Yang, Michael Shur, Alexander Dobrinsky
  • Publication number: 20170229612
    Abstract: A patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers, is provided. The patterned surface can include a set of substantially flat top surfaces and a plurality of openings. Each substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the openings can have a characteristic size between approximately 0.1 micron and five microns. One or more of the substantially flat top surfaces can be patterned based on target radiation.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Publication number: 20170229611
    Abstract: A semiconductor structure, such as a group III nitride-based semiconductor structure is provided. The semiconductor structure includes a cavity containing semiconductor layer. The cavity containing semiconductor layer can have a thickness greater than two monolayers and a multiple cavities. The cavities can have a characteristic size of at least one nanometer and a characteristic separation of at least five nanometers.
    Type: Application
    Filed: April 25, 2017
    Publication date: August 10, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Jinwei Yang, Wenhong Sun, Rakesh Jain, Michael Shur, Remigijus Gaska
  • Patent number: 9728844
    Abstract: A high-gain digitally tuned antenna system comprises a modified swept-back fractal (MSBF) radiator element, with the fractal preferably being a Sierpinski carpet fractal based on a parallelogram. A digital tuning circuit coupled to the radiator comprises an array of inductors which can be selectively connected to form a network which tunes the antenna system to a selected tuning frequency. The system is preferably arranged to selectively connect the inductors in series such that the combined inductances substantially cancel the capacitance of the radiator at a selected tuning frequency. The antenna system is preferably arranged to operate over the 30-88 MHz, 108-174 MHz, and 225-600 MHz bands, with a radiator height of 15? or less.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: August 8, 2017
    Assignee: SENSOR SYSTEMS, INC.
    Inventors: Zhen Biao Lin, Jack J. Q. Lin, Seymour Robin
  • Patent number: 9724441
    Abstract: Ultraviolet radiation is directed within an area at target wavelengths, target intensities, a target temporal distribution, and/or a target spatial distribution. The target attribute(s) of the ultraviolet radiation can correspond to at least one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, an ethylene decomposition operating configuration, and/or the like.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 8, 2017
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska
  • Patent number: 9726498
    Abstract: A processing apparatus including one or more processors and memory obtains one or more sensor measurements generated by one or more monitoring sensors of one or more devices, including one or more monitoring sensor measurements from a respective monitoring sensor of a respective device and obtains one or more system signals including a respective system signal corresponding to current operation of the respective device. The processing apparatus determines device context information for the respective device based on the one or more sensor measurements and the one or more system signals and adjusts operation of the device in accordance with the device context information.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: August 8, 2017
    Assignee: Sensor Platforms, Inc.
    Inventors: Deborah Meduna, Dev Rajnarayan, James V. Steele, Ian Chen
  • Publication number: 20170221801
    Abstract: A solution for packaging a two terminal device, such as a light emitting diode, is provided. In one embodiment, a method of packaging a two terminal device includes: patterning a metal sheet to include a plurality of openings; bonding at least one two terminal device to the metal sheet, wherein a first opening corresponds to a distance between a first contact and a second contact of the at least one two terminal device; and cutting the metal sheet around each of the least one two terminal device, wherein the metal sheet forms a first electrode to the first contact and a second electrode to the second contact.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Michael Shur, Remigijus Gaska, Alexander Dobrinsky
  • Publication number: 20170219479
    Abstract: A solution for evaluating a sample gas for a presence of a trace gas, such as ozone, is provided. The solution uses an ultraviolet source and an ultraviolet detector mounted in a chamber. The chamber can include reflecting walls and/or structures configured to guide ultraviolet light. A computer system can operate the ultraviolet source in a high power pulse mode and acquire data corresponding to an intensity of the ultraviolet radiation detected by the ultraviolet detector while a sample gas is present in the chamber. Using the data, the computer system can determine a presence and/or an amount of the trace gas in the sample gas.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Alexander Dobrinsky, Michael Shur, Remigijus Gaska