Abstract: Provided is a transparent conducting film having a favorable optical property, favorable electrical property, and almost no in-plane resistance anisotropy. A method for producing a transparent conducting film provided with a conducting layer containing a metal nanowire and a binder resin, comprises steps of: preparing a coating liquid containing the metal nanowire and the binder resin, and coating the coating liquid on one main face of a transparent substrate, wherein, in the coating step, a bar-coat printing method is performed using a bar provided with a groove having a pitch (P) and a depth (H) which satisfy a ratio P/H of 5 to 30.
Abstract: Provided is an epoxy polymer which has a mesogen skeleton and a structural unit represented by Formula (A). In Formula (A), each R5 independently represents an alkyl group having from 1 to 8 carbon atoms, and n represents an integer of 0 to 3.
Abstract: A molded body, comprising a resin and cells, the cells having an average diameter of from 0.03 mm to 0.13 mm, and a number per unit area of the cells at a cross-section of the molded body being no less than 20 cells/mm2.
Abstract: An information processing device and a magnetic sensor system are provided, in which accuracy of frequency measurement is less likely to deteriorate even though the frequency of output signals outputted from the magnetic sensor increases, and which have detection limits for high frequency measurement even with a minute frequency change rate. An information processing device 120 includes: an obtaining part 31 obtaining an output signal outputted by a magnetic sensor and oscillating at a frequency determined in response to strength of a magnetic field; a frequency determination part 32 utilizing interference between the output signal and a reference signal with a reference frequency, which is a frequency used as a reference, to determine the frequency of the output signal; and a magnetic field calculation part 40 calculating the strength of the magnetic field based on the determined frequency of the output signal.
Abstract: A copper paste for pressureless bonding is a copper paste for pressureless bonding, containing: metal particles; and a dispersion medium, in which the metal particles include sub-micro copper particles having a volume average particle diameter of greater than or equal to 0.01 ?m and less than or equal to 0.8 ?m, and micro copper particles having a volume average particle diameter of greater than or equal to 2.0 ?m and less than or equal to 50 ?m, and the dispersion medium contains a solvent having a boiling point of higher than or equal to 300° C., and a content of the solvent having a boiling point of higher than or equal to 300° C. is greater than or equal to 2 mass % on the basis of a total mass of the copper paste for pressureless bonding.
Abstract: A hinge includes: a vehicle body-side hinge member that includes a vehicle body attachment portion for attachment to a vehicle body; a back door-side hinge member that includes a door attachment portion for attachment to a back door and a coupling portion extending from the door attachment portion toward the vehicle body-side hinge member, the coupling portion including a reinforcing rib on both edges in a width direction intersecting an extension direction of the coupling portion; and a rotational support member that couples an end portion, at a side of the vehicle body-side hinge member, of the coupling portion together with the vehicle body-side hinge member, and that supports the vehicle body-side hinge member and the back door-side hinge member so as to allow relative rotation of the vehicle body-side hinge member and the back door-side hinge member.
Abstract: An object of the present invention is to provide a composite material usable as a negative electrode material of a lithium-ion secondary battery. A composite material of the present invention includes: a carbonaceous material; and a metal oxide layer coating a surface of the carbonaceous material, in which the metal oxide layer coats the surface of the carbonaceous material, forming a sea-island structure in which the metal oxide layer is scattered in islands, and a coating rate of the carbonaceous material with the metal oxide layer is 20% or more and 80% or less. A composite material of the present invention includes: a carbonaceous material; and a metal oxide layer and amorphous carbon layer coating the surface of the carbonaceous material, in which the metal oxide layer is scattered in islands on the surface of the carbonaceous material.
Abstract: A package for a power storage device includes at least one laminated packaging material having first and second sections. The packaging material includes a metallic foil layer, a heat-resistant resin layer, and a heat-fusible resin layer. In a state in which the heat-fusible resin layers of the first and second sections are faced, peripheral edges thereof are heat-sealed to form a storage chamber for accommodating a device main body. One of the sections is extended outside the storage chamber to form a conductive flange having an exposed heat-fusible resin layer. The conductive flange is provided with an external conductive section in which the heat-fusible resin layer is partially removed to expose the metallic foil layer. The packaging material having the external conductive section is provided with an internal conductive section in the storage chamber in which the heat-fusible resin layer is partially removed to expose the metallic foil layer.
Abstract: According to one aspect of the present invention, an organic fluorine compound is represented by a general formula (R-?-E-CH2-A-CH2-E?)n-??-G??(1B) (where n is an integer of 2 to 5, A is a divalent perfluoropolyether group, ? is an arylene group or a single bond, R is an alkenyl group or an alkynyl group, and E and E? are each independently an ether bond or an ester bond or a group that is represented by a chemical formula —O—CH2CH(OH)CH2O— ?? is a group in which n+1 hydrogen atoms are separated from benzene, G is an organic group containing a fullerene skeleton, the n number of groups each of which is represented by a general formula R-?-E-CH2-A-CH2-E?- may be the same or different, and at least one ? among the n number of ? is an arylene group).
Abstract: A magnetic sensor 1 includes: a nonmagnetic substrate 10; a sensitive element 31 laminated on the substrate 10, the sensitive element 31 being made of a soft magnetic material, the sensitive element 31 having a longitudinal direction and a transverse direction and having uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, the sensitive element 31 being configured to sense a magnetic field by a magnetic impedance effect; and a pair of thin-film magnets 20a, 20b laminated on the substrate 10 and disposed to face each other in the longitudinal direction across the sensitive element 31, the pair of thin-film magnets 20a, 20b being configured to apply a magnetic field in the longitudinal direction of the sensitive element 31.
Abstract: A photocurable composition for a hard coating material according to an aspect of the present invention contains (A) a polyfunctional polymerizable compound having three or more polymerizable double bonds, (B) an acrylic resin having a polymerizable double bond, (C) a polymerizable fluorine compound, and (D) a photopolymerization initiator.
Abstract: A magnetic sensor 1 includes a plurality of sensitive elements 31 made of a soft magnetic material. The sensitive elements 31 have a longitudinal direction and a transverse direction and have a uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction. The sensitive elements 31 are configured to sense a magnetic field by a magnetic impedance effect. The sensitive elements 31 are arranged with a gap in between in the transverse direction. The magnetic sensor 1 includes a connecting portion 32 configured to connect longitudinal ends of transversely adjacent ones of the sensitive elements 31. The connecting portion 32 has a width in the transverse direction that narrows as the connecting portion 32 approaches the ones of the sensitive elements 31 along the longitudinal direction.
Abstract: A slurry containing abrasive grains and a liquid medium, in which the abrasive grains include first particles and second particles in contact with the first particles, a particle size of the second particles is smaller than a particle size of the first particles, the first particles contain cerium oxide, the second particles contain a cerium compound, and in a case where a content of the abrasive grains is 0.1% by mass, an absorbance for light having a wavelength of 380 nm in a liquid phase obtained when the slurry is subjected to centrifugal separation for 5 minutes at a centrifugal acceleration of 5.8×104 G exceeds 0.
Abstract: A polyamideimide resin having an isocyanate group blocked with a compound selected from the group consisting of alcohols, oximes and lactams, and having a carboxyl group blocked with a vinyl ether group-containing compound.
Abstract: A pedestal 103 of the present invention is a pedestal 103 for a seed 102 for crystal growth, in which one main surface 103a to which the seed 102 adheres is flat, and the pedestal has a gas-permeable region 106 which a thickness from the one main surface 103a that is formed to be locally thin.
Abstract: A fluorine-containing ether compound represented by the following formula (1). C6H6-n—[O—R1—O—CH2—R2—CH2—R3]n??(1) (in the formula (1), n is an integer of 2 or 3, R1 is any one of —CH2CH2—, —CH2CH2CH2— and —CH2CH(OH)CH2—, R2 is a perfluoropolyether chain, R3 is —OCH2CH(OH)CH2O(CH2)mOH (m in the formula is an integer of 2 to 4)).
Abstract: A magnetic sensor includes: a non-magnetic substrate; and a sensitive element 31 having a longitudinal direction and a short direction, provided with uniaxial magnetic anisotropy in a direction crossing the longitudinal direction, and sensing a magnetic field by a magnetic impedance effect, wherein the sensitive element 31 includes plural soft magnetic material layers 105a to 105d and plural non-magnetic material layers 106a to 106c configured with a non-magnetic material and laminated between the plural soft magnetic material layers 105a to 105d, and the soft magnetic material layers 105a to 105d facing each other with each of the non-magnetic material layers 106a to 106c interposed therebetween are antiferromagnetically coupled.
Abstract: A carbon fiber is obtained by sequentially performing: a step (I) of dissolving a fullerene mixture including fullerenes C60 and C70 in an organic solvent to prepare a fullerene solution; a step (II) of immersing a material carbon fiber in the fullerene solution; and a step (III) of extracting the carbon fiber from the fullerene solution and drying the extracted carbon fiber.
Abstract: Disclosed is a composition containing copper particles and organic solvents, in which the organic solvents include a first organic solvent having a vapor pressure at 20° C. of 200 Pa or more and 20 kPa or less, and a second organic solvent having a vapor pressure at 20° C. of 0.5 Pa or more and less than 200 Pa.
Abstract: A lubricant for a magnetic recording medium capable of forming a lubricant layer having excellent adhesion to a protective layer is provided. A lubricant for a magnetic recording medium contains a fluorine-containing ether compound in which a group having an ethylenic carbon-carbon double bond is disposed at one or both terminals of a perfluoroalkyl polyether chain. It is preferable that the group having the ethylenic carbon-carbon double bond is disposed at one terminal of the perfluoroalkyl polyether chain, and a hydroxyl group is disposed at other terminal. It is preferable that the lubricant for a magnetic recording medium contains a compound in which one or more functional groups selected from a hydroxyl group, an amino group, an amido group and a carboxyl group is disposed at one or both terminals of a perfluoroalkyl polyether chain.